

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	Flask-Restless 0.10.1 documentation

Flask-Restless

Flask-Restless provides simple generation of ReSTful APIs for database
models defined using SQLAlchemy (or Flask-SQLAlchemy). The generated APIs send
and receive messages in JSON format.

User’s guide

	Downloading and installing Flask-Restless

	Quickstart

	Creating API endpoints

	Customizing the ReSTful interface
	HTTP methods

	API prefix

	Collection name

	Enable patching all instances

	Capturing validation errors

	Exposing evaluation of SQL functions

	Specifying which columns are provided in responses

	Server-side pagination

	Request preprocessors and postprocessors

	Making search queries
	Quick examples

	Query format

	Operators

	Examples

	Format of requests and responses
	Error messages

	Function evaluation

	JSON-P callbacks

	Pagination

API reference

	API

Additional information

	Copyright and license

	Changelog
	Version 0.10.1

	Version 0.10.0

	Version 0.9.3

	Version 0.9.2

	Version 0.9.1

	Version 0.9.0

	Version 0.8.0

	Version 0.7.0

	Version 0.6

	Version 0.5

	Version 0.4

	Version 0.3

 Copyright 2012 Jeffrey Finkelstein.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.12.0

 	0.11.0

 	0.10.1

 	0.10.0

 	0.9.3

 	0.9.2

 	0.9.1

 	0.9.0

 	0.8.0

 	0.7.0

 	0.6

 	0.5

 	0.4

 	0.3

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Flask-Restless 0.10.1 documentation

Downloading and installing Flask-Restless

Flask-Restless can be downloaded from its page on the Python Package Index [http://pypi.python.org/pypi/Flask-Restless]. The development version can be
downloaded from its page at GitHub [http://github.com/jfinkels/flask-restless]. However, it is better to install
with pip (hopefully in a virtual environment provided by virtualenv):

pip install Flask-Restless

Flask-Restless has the following dependencies (which will be automatically
installed if you use pip):

	Flask [http://flask.pocoo.org] version 0.7 or greater

	SQLAlchemy [http://sqlalchemy.org]

	python-dateutil [http://labix.org/python-dateutil] version strictly
greater than 2.0 if you are using Python 2.6 or Python 2.7, version strictly
less than 2.0 if you are using Python 2.5

	simplejson [http://pypi.python.org/pypi/simplejson], only if you are
using Python 2.5

	Flask-SQLAlchemy [http://packages.python.org/Flask-SQLAlchemy], only if
you want to define your models using Flask-SQLAlchemy (which we highly
recommend)

Flask-Restless requires Python version 2.5, 2.6 or 2.7. Python 3 support will
come when Flask has it.

 Copyright 2012 Jeffrey Finkelstein.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.12.0

 	0.11.0

 	0.10.1

 	0.10.0

 	0.9.3

 	0.9.2

 	0.9.1

 	0.9.0

 	0.8.0

 	0.7.0

 	0.6

 	0.5

 	0.4

 	0.3

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Flask-Restless 0.10.1 documentation

Quickstart

For the restless:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

	import flask
import flask.ext.sqlalchemy
import flask.ext.restless

Create the Flask application and the Flask-SQLAlchemy object.
app = flask.Flask(__name__)
app.config['DEBUG'] = True
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:////tmp/test.db'
db = flask.ext.sqlalchemy.SQLAlchemy(app)

Create your Flask-SQLALchemy models as usual but with the following two
(reasonable) restrictions:
1. They must have an id column of type Integer.
2. They must have an __init__ method which accepts keyword arguments for
all columns (the constructor in flask.ext.sqlalchemy.SQLAlchemy.Model
supplies such a method, so you don't need to declare a new one).
class Person(db.Model):
 id = db.Column(db.Integer, primary_key=True)
 name = db.Column(db.Unicode, unique=True)
 birth_date = db.Column(db.Date)

class Computer(db.Model):
 id = db.Column(db.Integer, primary_key=True)
 name = db.Column(db.Unicode, unique=True)
 vendor = db.Column(db.Unicode)
 purchase_time = db.Column(db.DateTime)
 owner_id = db.Column(db.Integer, db.ForeignKey('person.id'))
 owner = db.relationship('Person', backref=db.backref('computers',
 lazy='dynamic'))

Create the database tables.
db.create_all()

Create the Flask-Restless API manager.
manager = flask.ext.restless.APIManager(app, flask_sqlalchemy_db=db)

Create API endpoints, which will be available at /api/<tablename> by
default. Allowed HTTP methods can be specified as well.
manager.create_api(Person, methods=['GET', 'POST', 'DELETE'])
manager.create_api(Computer, methods=['GET'])

start the flask loop
app.run()

You may find this example at examples/quickstart.py in the source
distribution; you may also view it online at GitHub [https://github.com/jfinkels/flask-restless/tree/master/examples/quickstart.py].

Further examples can be found in the examples/ directory in the source
distribution or on the web [https://github.com/jfinkels/flask-restless/tree/master/examples].

 Copyright 2012 Jeffrey Finkelstein.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.12.0

 	0.11.0

 	0.10.1

 	0.10.0

 	0.9.3

 	0.9.2

 	0.9.1

 	0.9.0

 	0.8.0

 	0.7.0

 	0.6

 	0.5

 	0.4

 	0.3

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Flask-Restless 0.10.1 documentation

Creating API endpoints

To use this extension, you must have defined your database models using either
SQLAlchemy or Flask-SQLALchemy.

The basic setup for Flask-SQLAlchemy is the same. First, create your
flask.Flask [http://flask.pocoo.org/docs/api/#flask.Flask] object, flask.ext.sqlalchemy.SQLAlchemy [http://packages.python.org/Flask-SQLAlchemy/api.html#flask.ext.sqlalchemy.SQLAlchemy] object,
and model classes as usual but with the following two (reasonable) restrictions
on models:

	They must have a primary key column of type sqlalchemy.Integer or
type sqlalchemy.Unicode.

	They must have an __init__ method which accepts keyword arguments for
all columns (the constructor in
flask.ext.sqlalchemy.SQLAlchemy.Model supplies such a method, so
you don’t need to declare a new one).

import flask
import flask.ext.sqlalchemy

app = flask.Flask(__name__)
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:////tmp/test.db'
db = flask.ext.sqlalchemy.SQLAlchemy(app)

class Person(db.Model):
 id = db.Column(db.Integer, primary_key=True)
 name = db.Column(db.Unicode, unique=True)
 birth_date = db.Column(db.Date)
 computers = db.relationship('Computer',
 backref=db.backref('owner',
 lazy='dynamic'))

class Computer(db.Model):
 id = db.Column(db.Integer, primary_key=True)
 name = db.Column(db.Unicode, unique=True)
 vendor = db.Column(db.Unicode)
 owner_id = db.Column(db.Integer, db.ForeignKey('person.id'))
 purchase_time = db.Column(db.DateTime)

db.create_all()

If you are using pure SQLAlchemy:

from flask import Flask
from sqlalchemy import Column, Date, DateTime, Float, Integer, Unicode
from sqlalchemy import ForeignKey
from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import backref, relationship
from sqlalchemy.orm import scoped_session, sessionmaker

app = Flask(__name__)
engine = create_engine('sqlite:////tmp/testdb.sqlite', convert_unicode=True)
Session = sessionmaker(autocommit=False, autoflush=False, bind=engine)
mysession = scoped_session(Session)

Base = declarative_base()
Base.metadata.bind = engine

class Computer(Base):
 __tablename__ = 'computer'
 id = Column(Integer, primary_key=True)
 name = Column(Unicode, unique=True)
 vendor = Column(Unicode)
 buy_date = Column(DateTime)
 owner_id = Column(Integer, ForeignKey('person.id'))

class Person(Base):
 __tablename__ = 'person'
 id = Column(Integer, primary_key=True)
 name = Column(Unicode, unique=True)
 age = Column(Float)
 other = Column(Float)
 birth_date = Column(Date)
 computers = relationship('Computer',
 backref=backref('owner', lazy='dynamic'))

Base.metadata.create_all()

Warning

Attributes of these entities must not have a name containing two
underscores. For example, this class definition is no good:

class Person(db.Model):
 __mysecretfield = db.Column(db.Unicode)

This restriction is necessary because the search feature (see
Making search queries) uses double underscores as a separator. This may change
in future versions.

Second, instantiate a flask.ext.restless.APIManager object with the
Flask [http://flask.pocoo.org/docs/api/#flask.Flask] and SQLAlchemy [http://packages.python.org/Flask-SQLAlchemy/api.html#flask.ext.sqlalchemy.SQLAlchemy] objects:

from flask.ext.restless import APIManager

manager = APIManager(app, flask_sqlalchemy_db=db)

Or if you are using pure SQLAlchemy, specify the session you created above
instead:

manager = APIManager(app, session=mysession)

Third, create the API endpoints which will be accessible to web clients:

person_blueprint = manager.create_api(Person,
 methods=['GET', 'POST', 'DELETE'])
computer_blueprint = manager.create_api(Computer)

Note that you can specify which HTTP methods are available for each API
endpoint. There are several more customization options; for more information,
see Customizing the ReSTful interface.

Due to the design of Flask, these APIs must be created before your application
handles any requests. The return value of APIManager.create_api() is the
blueprint in which the endpoints for the specified database model live. The
blueprint has already been registered on the Flask [http://flask.pocoo.org/docs/api/#flask.Flask] application,
so you do not need to register it yourself. It is provided so that you can
examine its attributes, but if you don’t need it then just ignore it:

manager.create_api(Person, methods=['GET', 'POST', 'DELETE'])
manager.create_api(Computer)

If you wish to create the blueprint for the API without registering it (for
example, if you wish to register it later in your code), use the
APIManager.create_api_blueprint() method instead:

blueprint = manager.create_api_blueprint(Person, methods=['GET', 'POST'])
later...
app.register_blueprint(blueprint)

By default, the API for Person, in the above code samples, will be
accessible at http://<host>:<port>/api/person, where the person part of
the URL is the value of Person.__tablename__:

>>> import json # import simplejson as json, if on Python 2.5
>>> import requests # python-requests is installable from PyPI...
>>> newperson = {'name': u'Lincoln', 'age': 23}
>>> r = requests.post('/api/person', data=json.dumps(newperson),
... headers={'content-type': 'application/json'})
>>> r.status_code, r.headers['content-type'], r.data
(201, 'application/json', '{"id": 1}')
>>> newid = json.loads(r.data)['id']
>>> r = requests.get('/api/person/%s' % newid,
... headers={'content-type': 'application/json'})
>>> r.status_code, r.headers['content-type']
(200, 'application/json')
>>> r.data
{
 "other": null,
 "name": "Lincoln",
 "birth_date": null,
 "age": 23.0,
 "computers": [],
 "id": 1
}

If the primary key is a Unicode instead of an
Integer, the instances will be accesible at URL endpoints
like http://<host>:<port>/api/person/foo instead of
http://<host>:<port>/api/person/1.

 Copyright 2012 Jeffrey Finkelstein.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.12.0

 	0.11.0

 	0.10.1

 	0.10.0

 	0.9.3

 	0.9.2

 	0.9.1

 	0.9.0

 	0.8.0

 	0.7.0

 	0.6

 	0.5

 	0.4

 	0.3

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Flask-Restless 0.10.1 documentation

Customizing the ReSTful interface

HTTP methods

By default, the APIManager.create_api() method creates a read-only
interface; requests with HTTP methods other than GET [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3] will cause
a response with 405 Method Not Allowed [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.6]. To explicitly specify which methods
should be allowed for the endpoint, pass a list as the value of keyword
argument methods:

apimanager.create_api(Person, methods=['GET', 'POST', 'DELETE'])

This creates an endpoint at /api/person which responds to
GET [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3], POST [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5], and DELETE [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.7] methods, but
not to other ones like PUT [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.6] or PATCH [http://tools.ietf.org/html/rfc5789#section-2].

The recognized HTTP methods and their semantics are described below (assuming
you have created an API for an entity Person). All endpoints which respond
with data respond with serialized JSON strings.

	
GET /api/person

	Returns a list of all Person instances.

	
GET /api/person/(int: id)

	Returns a single Person instance with the given id.

	
GET /api/person?q=<searchjson>

	Returns a list of all Person instances which match the search query
specified in the query parameter q. For more information on searching,
see Making search queries.

	
DELETE /api/person/(int: id)

	Deletes the person with the given id and returns 204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5].

	
POST /api/person

	Creates a new person in the database and returns its id. The initial
attributes of the Person are read as JSON from the body of the
request. For information about the format of this request, see
Format of requests and responses.

	
PATCH /api/person/(int: id)

	Updates the attributes of the Person with the given id. The
attributes are read as JSON from the body of the request. For information
about the format of this request, see Format of requests and responses.

	
PATCH /api/person

	This is only available if the allow_patch_many keyword argument is set
to True when calling the create_api() method. For more
information, see Enable patching all instances.

Updates the attributes of all Person instances. The attributes are read
as JSON from the body of the request. For information about the format of
this request, see Format of requests and responses.

	
PUT /api/person

	

	
PUT /api/person/(int: id)

	Aliases for PATCH /api/person and
PATCH /api/person/(int:id).

API prefix

To create an API at a different prefix, use the url_prefix keyword
argument:

apimanager.create_api(Person, url_prefix='/api/v2')

Then your API for Person will be available at /api/v2/person.

Collection name

By default, the name of the collection which appears in the URLs of the API
will be the name of the table which backs your model. If your model is a
SQLAlchemy model, this will be the value of __tablename__. If your model is
a Flask-SQLAlchemy model, this will be the lowercase name of the model with
CamelCase changed to camel_case.

To provide a different name for the model, provide a string to the
collection_name keyword argument of the APIManager.create_api()
method:

apimanager.create_api(Person, collection_name='people')

Then the API will be exposed at /api/people instead of /api/person.

Enable patching all instances

By default, a PATCH /api/person request (note the missing ID) will
cause a 405 Method Not Allowed [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.6] response. By setting the allow_patch_many
keyword argument of the APIManager.create_api() method to be True,
PATCH /api/person requests will patch the provided attributes on all
instances of Person:

apimanager.create_api(Person, methods=['PATCH'], allow_patch_many=True)

Capturing validation errors

By default, no validation is performed by Flask-Restless; if you want
validation, implement it yourself in your database models. However, by
specifying a list of exceptions raised by your backend on validation errors,
Flask-Restless will forward messages from raised exceptions to the client in an
error response.

A reasonable validation framework you might use for this purpose is SQLAlchemy
Validation [https://bitbucket.org/blazelibs/sqlalchemy-validation]. You can
also use the validates() [http://sqlalchemy.org/docs/orm/mapper_config.html#sqlalchemy.orm.validates] decorator that comes with
SQLAlchemy.

For example, if your validation framework includes an exception called
ValidationError, then call the APIManager.create_api() method with
the validation_exceptions keyword argument:

from cool_validation_framework import ValidationError
apimanager.create_api(Person, validation_exceptions=[ValidationError])

Note

Currently, Flask-Restless expects that an instance of a specified validation
error will have a errors attribute, which is a dictionary mapping field
name to error description (note: one error per field). If you have a better,
more general solution to this problem, please visit our issue tracker [https://github.com/jfinkels/flask-restless/issues].

Now when you make POST [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5] and PATCH [http://tools.ietf.org/html/rfc5789#section-2] requests with
invalid fields, the JSON response will look like this:

HTTP/1.1 400 Bad Request

{ "validation_errors":
 {
 "age": "Must be an integer",
 }
}

Currently, Flask-Restless can only forward one exception at a time to the
client.

Exposing evaluation of SQL functions

If the allow_functions keyword argument is set to True when creating an
API for a model using APIManager.create_api(), then an endpoint will be
made available for GET /api/eval/person which responds to requests for
evaluation of functions on all instances the model.

For information about the request and response formats for this endpoint, see
Function evaluation.

Specifying which columns are provided in responses

By default, all columns of your model will be exposed by the API. If the
include_columns keyword argument is an iterable of strings, only columns
with those names (that is, the strings represent the names of attributes of the
model which are Column objects) will be provided in JSON responses for
GET [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3] requests.

For example, if your models are defined like this (using Flask-SQLAlchemy):

class Person(db.Model):
 id = db.Column(db.Integer, primary_key=True)
 name = db.Column(db.Unicode, unique=True)
 birth_date = db.Column(db.Date)
 computers = db.relationship('Computer')

and you want your JSON responses to include only the values of the name and
birth_date columns, create your API with the following arguments:

apimanager.create_api(Person, include_columns=['name', 'birth_date'])

Now requests like GET /api/person/1 will return JSON objects which look
like this:

{"name": "Jeffrey", "birth_date": "1999-12-31"}

The exclude_columns keyword argument works similarly; it forces your JSON
responses to include only the columns not specified in exclude_columns.
For example:

apimanager.create_api(Person, exclude_columns=['name', 'birth_date'])

will produce responses like:

{"id": 1, "computers": [{"id": 1, "vendor": "Apple", "model": "MacBook"}]}

In this example, the Person model has a one-to-many relationship with the
Computer model. To specify which columns on the related models will be
included or excluded, include a string of the form '<relation>.<column>',
where <relation> is the name of the relationship attribute of the model and
<column> is the name of the column on the related model which you want to
be included or excluded. For example:

includes = ['name', 'birth_date', 'computers', 'computers.vendor']
apimanager.create_api(Person, include_columns=includes)

will produce responses like:

{
 "name": "Jeffrey",
 "birth_date": "1999-12-31",
 "computers": [{"vendor": "Apple"}]
}

An attempt to include a field on a related model without including the
relationship field has no effect:

includes = ['name', 'birth_date', 'computers.vendor']
apimanager.create_api(Person, include_columns=includes)

{"name": "Jeffrey", "birth_date": "1999-12-31"}

Server-side pagination

To set the default number of results returned per page, use the
results_per_page keyword argument to the APIManager.create_api()
method. The default number of results per page is ten. The client can override
the number of results per page by using a query parameter in its
GET [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3] request; see Pagination.

To set the maximum number of results returned per page, use the
max_results_per_page keyword argument. Even if results_per_page >
max_results_per_page, at most max_results_per_page will be returned. The
same is true if the client specifies results_per_page as a query argument;
max_results_per_page provides an upper bound.

If max_results_per_page is set to anything but a positive integer, the
client will be able to specify arbitrarily large page sizes. If, further,
results_per_page is set to anything but a positive integer, pagination will
be disabled by default, and any GET [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3] request which does not
specify a page size in its query parameters will get a response with all
matching results.

Attention

Disabling pagination can result in large responses!

For example, to set each page to include only two results:

apimanager.create_api(Person, results_per_page=2)

Then a request to GET /api/person will return a JSON object which looks
like this:

{
 "num_results": 6,
 "total_pages": 3,
 "page": 1,
 "objects": [
 {"name": "Jeffrey", "id": 1},
 {"name": "John", "id": 2}
]
}

For more information on using pagination in the client, see
Pagination.

Request preprocessors and postprocessors

To apply a function to the request parameters and/or body before the request is
processed, use the preprocessors keyword argument. To apply a function to
the response data after the request is processed (immediately before the
response is sent), use the postprocessors keyword argument. Both
preprocessors and postprocessors must be a dictionary which maps HTTP
method names as strings (with exceptions as described below) to a list of
functions. The specified functions will be applied in the order given in the
list.

Since GET [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3] and PATCH [http://tools.ietf.org/html/rfc5789#section-2] (and PUT [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.6])
requests can be made not only on individual instances of the model but also the
entire collection of instances, you must separately specify which functions to
apply in the individual case and which to apply in the collection case. For
example:

Define pre- and postprocessor functions as described below.
def pre_get_single(**kw): pass
def pre_get_many(**kw): pass
def post_patch_many(**kw): pass
def pre_delete(**kw): pass

Create an API for the Person model.
manager.create_api(Person,
 # Allow GET, PATCH, and POST requests.
 methods=['GET', 'PATCH', 'DELETE'],
 # Allow PATCH requests modifying the whole collection.
 allow_patch_many=True,
 # A list of preprocessors for each method.
 preprocessors={
 'GET_SINGLE': [pre_get_single],
 'GET_MANY': [pre_get_many],
 'DELETE': [pre_delete]
 },
 # A list of postprocessors for each method.
 postprocessors={
 'PATCH_MANY': [post_patch_many]
 }
)

As introduced in the above example, the dictionary keys for the preprocessors
and postprocessors can be one of the following strings:

	'GET_SINGLE' for requests to get a single instance of the model.

	'GET_MANY' for requests to get the entire collection of instances of the
model.

	'PATCH_SINGLE' or 'PUT_SINGLE' for requests to patch a single
instance of the model.

	'PATCH_MANY' or 'PATCH_SINGLE' for requests to patch the entire
collection of instances of the model.

	'POST' for requests to post a new instance of the model.

	'DELETE' for requests to delete an instance of the model.

Note

Since PUT [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.6] requests are handled by the PATCH [http://tools.ietf.org/html/rfc5789#section-2]
handler, any preprocessors or postprocessors specified for the
PUT [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.6] method will be applied on PATCH [http://tools.ietf.org/html/rfc5789#section-2] requests
after the preprocessors or postprocessors specified for the
PATCH [http://tools.ietf.org/html/rfc5789#section-2] method.

The preprocessors and postprocessors for each type of request accept different
arguments, but none of them has a return value (more specifically, any returned
value is ignored). Preprocessors and postprocessors modify their arguments
in-place. The arguments to the preprocessor and postprocessor functions will
be provided as keyword arguments, so you should always add **kw as the
final argument when defining a preprocessor or postprocessor function. This
way, you can specify only the keyword arguments you need when defining your
functions.

	GET [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3] for a single instance:

def get_single_preprocessor(instance_id=None, **kw):
 """Accepts a single argument, `instance_id`, the primary key of the
 instance of the model to get.

 """
 pass

def get_single_postprocessor(result=None, **kw):
 """Accepts a single argument, `result`, which is the dictionary
 representation of the requested instance of the model.

 """
 pass

and for the collection:

def get_many_preprocessor(search_params=None, **kw):
 """Accepts a single argument, `search_params`, which is a dictionary
 containing the search parameters for the request.

 """
 pass

def get_many_postprocessor(result=None, **kw):
 """Accepts a single argument, `result`, which is the dictionary
 representation of the JSON response which will be returned to the
 client.

 """
 pass

	PATCH [http://tools.ietf.org/html/rfc5789#section-2] (or PUT [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.6]) for a single instance:

def patch_single_preprocessor(instance_id=None, data=None, **kw):
 """Accepts two arguments, `instance_id`, the primary key of the
 instance of the model to patch, and `data`, the dictionary of fields
 to change on the instance.

 """
 pass

def patch_single_postprocessor(result=None, **kw):
 """Accepts a single argument, `result`, which is the dictionary
 representation of the requested instance of the model.

 """
 pass

and for the collection:

def patch_many_preprocessor(search_params=None, data=None, **kw):
 """Accepts two arguments: `search_params`, which is a dictionary
 containing the search parameters for the request, and `data`, which
 is a dictionary representing the fields to change on the matching
 instances and the values to which they will be set.

 """
 pass

def patch_many_postprocessor(query=None, data=None, **kw):
 """Accepts two arguments: `query`, which is the SQLAlchemy query
 which was inferred from the search parameters in the query string,
 and `data`, which is the dictionary representation of the JSON
 response which will be returned to the client.

 """
 pass

	POST [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5]:

def post_preprocessor(data=None, **kw):
 """Accepts a single argument, `data`, which is the dictionary of
 fields to set on the new instance of the model.

 """
 pass

def post_postprocessor(result=None, **kw):
 """Accepts a single argument, `result`, which is the dictionary
 representation of the created instance of the model.

 """
 pass

	DELETE [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.7]:

def delete_preprocessor(instance_id=None, **kw):
 """Accepts a single argument, `instance_id`, which is the primary key
 of the instance which will be deleted.

 """
 pass

def delete_postprocessor(was_deleted=None, **kw):
 """Accepts a single argument, `was_deleted`, which represents whether
 the instance has been deleted.

 """
 pass

Note

For more information about search parameters, see Making search queries, and
for more information about request and response formats, see
Format of requests and responses.

In order to halt the preprocessing or postprocessing and return an error
response directly to the client, your preprocessor or postprocessor functions
can raise a ProcessingException. If a function raises this exception, no
preprocessing or postprocessing functions that appear later in the list
specified when the API was created will be invoked. For example, an
authentication function can be implemented like this:

def check_auth(instance_id=None, **kw):
 # Here, get the current user from the session.
 current_user = ...
 # Next, check if the user is authorized to modify the specified
 # instance of the model.
 if not is_authorized_to_modify(current_user, instance_id):
 raise ProcessingException(message='Not Authorized',
 status_code=401)
manager.create_api(Person, preprocessors=dict(GET_SINGLE=[check_auth]))

The ProcessingException allows you to specify an HTTP status code for
the generated response and an error message which the client will receive as
part of the JSON in the body of the response.

Preprocessors for collections

When the server receives, for example, a request for GET /api/person,
Flask-Restless interprets this request as a search with no filters (that is, a
search for all instances of Person without exception). In other words,
GET /api/person is roughly equivalent to
GET /api/person?q={}. Therefore, if you want to filter the set of
Person instances returned by such a request, you can create a preprocessor
for a GET [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3] request to the collection endpoint that appends
filters to the search_params keyword argument. For example:

def preprocessor(search_params=None, **kw):
 # This checks if the preprocessor function is being called before a
 # request that does not have search parameters.
 if search_params is None:
 return
 # Create the filter you wish to add; in this case, we include only
 # instances with ``id`` not equal to 1.
 filt = dict(name='id', op='neq', val=1)
 # Check if there are any filters there already.
 if 'filters' not in search_params:
 search_params['filters'] = []
 # *Append* your filter to the list of filters.
 search_params['filters'].append(filt)

apimanager.create_api(Person, preprocessors=dict(GET_MANY=[preprocessor]))

Requiring authentication for some methods

If you want certain HTTP methods to require authentication, use preprocessors:

from flask import Flask
from flask.ext.restless import APIManager
from flask.ext.restless import NO_CHANGE
from flask.ext.restless import ProcessingException
from flask.ext.login import current_user
from mymodels import User

def auth_func(params):
 if not current_user.is_authenticated():
 raise ProcessingException(message='Not authenticated!')
 return NO_CHANGE

app = Flask(__name__)
api_manager = APIManager(app)
api_manager.create_api(User, preprocessors=dict(GET_SINGLE=[auth_func],
 GET_MANY=[auth_func]))

For a more complete example using Flask-Login, see the
examples/server_configurations/authentication directory in the source
distribution, or view it online at GitHub [https://github.com/jfinkels/flask-restless/tree/master/examples/server_configurations/authentication].

 Copyright 2012 Jeffrey Finkelstein.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.12.0

 	0.11.0

 	0.10.1

 	0.10.0

 	0.9.3

 	0.9.2

 	0.9.1

 	0.9.0

 	0.8.0

 	0.7.0

 	0.6

 	0.5

 	0.4

 	0.3

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Flask-Restless 0.10.1 documentation

Making search queries

Clients can make GET [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3] requests on individual instances of a model
(for example, GET /api/person/1) and on collections of all instances of
a model (GET /api/person). To get all instances of a model that meet
some criteria, clients can make GET [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3] requests with a query
parameter specifying a search. The search functionality in Flask-Restless is
relatively simple, but should suffice for many cases.

Quick examples

The following are some quick examples of creating search queries with different
types of clients. Find more complete documentation in subsequent sections. In
these examples, each client will search for instances of the model Person
whose names contain the letter “y”.

Using the Python requests [http://docs.python-requests.org/en/latest/]
library:

import requests
import json

url = 'http://127.0.0.1:5000/api/person'
headers = {'Content-Type': 'application/json'}

filters = [dict(name='name', op='like', val='%y%')]
params = dict(q=json.dumps(dict(filters=filters)))

response = requests.get(url, params=params, headers=headers)
assert response.status_code == 200
print(response.json())

Using jQuery [http://jquery.com/]:

var filters = [{"name": "id", "op": "lte", "val": 5}];
$.ajax({
 url: 'http://127.0.0.1:5000/api/person',
 data: {"q": JSON.stringify({"filters": filters})},
 dataType: "json",
 contentType: "application/json",
 success: function(data) { console.log(data.objects); }
});

Using curl [http://curl.haxx.se/]:

curl \
 -G \
 -H "Content-type: application/json" \
 -d "q={\"filters\":[{\"name\":\"name\",\"op\":\"like\",\"val\":\"%y%\"}]}" \
 http://127.0.0.1:5000/api/person

The examples/ directory has more complete versions of these examples.

Query format

The query parameter q must be a JSON string. It can have the following
mappings, all of which are optional:

	filters

	A list of objects of one of the following forms:

{"name": <fieldname>, "op": <operatorname>, "val": <argument>}

or:

{"name": <fieldname>, "op": <operatorname>, "field": <fieldname>}

In the first form, <operatorname> is one of the strings described in the
Operators section, the first <fieldname> is the name of the field
of the model to which to apply the operator, <argument> is a value to be
used as the second argument to the given operator. In the second form, the
second <fieldname> is the field of the model that should be used as the
second argument to the operator.

<fieldname> may alternately specify a field on a related model, if it is
a string of the form <relationname>__<fieldname>.

The returned list of matching instances will include only those instances
that satisfy all of the given filters.

	disjunction

	A Boolean that specifies whether the list of filters should be treated as a
disjunction or a conjunction. If this is true, the response will include
all instances of the model that match any of the filters. If this is
false the response will include all instances of the model that match
all of the filters. This will be treated as false if not specified by
the client (in other words, the default is conjunction).

	limit

	A positive integer which specifies the maximum number of objects to return.

	offset

	A positive integer which specifies the offset into the result set of the
returned list of instances.

	order_by

	A list of objects of the form:

{"field": <fieldname>, "direction": <directionname>}

where <fieldname> is a string corresponding to the name of a field of the
requested model and <directionname> is either "asc" for ascending
order or "desc" for descending order.

	single

	A Boolean representing whether a single result is expected as a result of the
search. If this is true and either no results or multiple results meet
the criteria of the search, the server responds with an error message.

If a filter is poorly formatted (for example, op is set to '==' but
val is not set), the server responds with 400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1].

Operators

The operator strings recognized by the API incude:

	==, eq, equals, equals_to

	!=, neq, does_not_equal, not_equal_to

	>, gt, <, lt

	>=, ge, gte, geq, <=, le, lte, leq

	in, not_in

	is_null, is_not_null

	like

	has

	any

These correspond to SQLAlchemy column operators as defined here [http://docs.sqlalchemy.org/en/latest/core/expression_api.html#sqlalchemy.sql.operators.ColumnOperators].

Examples

Consider a Person model available at the URL /api/person, and suppose
all of the following requests are GET /api/person requests with query
parameter q.

Attribute greater than a value

On request:

GET /api/person?q={"filters":[{"name":"age","op":"ge","val":10}]} HTTP/1.1
Host: example.com

the response will include only those Person instances that have age
attribute greater than or equal to 10:

HTTP/1.1 200 OK

{
 "num_results": 8,
 "total_pages": 3,
 "page": 2,
 "objects":
 [
 {"id": 1, "name": "Jeffrey", "age": 24},
 {"id": 2, "name": "John", "age": 13},
 {"id": 3, "name": "Mary", "age": 18}
]
}

Disjunction of filters

On request:

GET /api/person?q={"filters":[{"name":"age","op":"le","val":10},{"name":"age","op":"ge","val":20}],"disjunction":true} HTTP/1.1
Host: example.com

the response will include only those Person instances that have age
attribute either less than 10 or greater than 20:

HTTP/1.1 200 OK

{
 "num_results": 3,
 "total_pages": 1,
 "page": 1,
 "objects":
 [
 {"id": 4, "name": "Abraham", "age": 11},
 {"id": 5, "name": "Isaac", "age": 15},
 {"id": 6, "name": "Job", "age": 13}
]
}

Attribute between two values

On request:

GET /api/person?q={"filters":[{"name":"age","op":"ge","val":10},{"name":"age","op":"le","val":20}]} HTTP/1.1
Host: example.com

the response will include only those Person instances that have age
attribute between 10 and 20, inclusive:

HTTP/1.1 200 OK

{
 "num_results": 6,
 "total_pages": 3,
 "page": 2,
 "objects":
 [
 {"id": 2, "name": "John", "age": 13},
 {"id": 3, "name": "Mary", "age": 18}
]
}

Expecting a single result

On request:

GET /api/person?q={"filters":[{"name":"id","op":"eq","val":1}],"single":true} HTTP/1.1
Host: example.com

the response will include only the sole Person instance with id equal
to 1:

HTTP/1.1 200 OK

{"id": 1, "name": "Jeffrey", "age": 24}

In the case that the search would return no results or more than one result, an
error response is returned instead:

GET /api/person?q={"filters":[{"name":"age","op":"ge","val":10}],"single":true} HTTP/1.1
Host: example.com

HTTP/1.1 400 Bad Request

{"message": "Multiple results found"}

GET /api/person?q={"filters":[{"name":"id","op":"eq","val":-1}],"single":true} HTTP/1.1
Host: example.com

HTTP/1.1 400 Bad Request

{"message": "No result found"}

Comparing two attributes

On request:

GET /api/person?q={"filters":[{"name":"age","op":"ge","field":"height"}]} HTTP/1.1
Host: example.com

the response will include only those Person instances that have age
attribute greater than or equal to the value of the height attribute:

HTTP/1.1 200 OK

{
 "num_results": 6,
 "total_pages": 3,
 "page": 2,
 "objects":
 [
 {"id": 1, "name": "John", "age": 80, "height": 65},
 {"id": 2, "name": "Mary", "age": 73, "height": 60}
]
}

Comparing attribute of a relation

On request:

GET /api/person?q={"filters":[{"name":"computers__manufacturer","op":"any","val":"Apple"}],"single":true} HTTP/1.1
Host: example.com

response will include only those Person instances that are related to any
Computer model that is manufactured by Apple:

HTTP/1.1 200 OK

{
 "num_results": 6,
 "total_pages": 3,
 "page": 2,
 "objects":
 {
 "id": 1,
 "name": "John",
 "computers": [
 { "id": 1, "manufacturer": "Dell", "model": "Inspiron 9300"},
 { "id": 2, "manufacturer": "Apple", "model": "MacBook"}
]
 },
 {
 "id": 2,
 "name": "Mary",
 "computers": [
 { "id": 3, "manufacturer": "Apple", "model": "iMac"}
]
 }
]
}

 Copyright 2012 Jeffrey Finkelstein.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.12.0

 	0.11.0

 	0.10.1

 	0.10.0

 	0.9.3

 	0.9.2

 	0.9.1

 	0.9.0

 	0.8.0

 	0.7.0

 	0.6

 	0.5

 	0.4

 	0.3

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Flask-Restless 0.10.1 documentation

Format of requests and responses

Requests and responses are all in JSON format, so the mimetype is
application/json. Ensure that requests you make have the correct
mimetype and/or content type.

Suppose we have the following Flask-SQLAlchemy models (the example works with
pure SQLALchemy just the same):

from flask import Flask
from flask.ext.sqlalchemy import SQLAlchemy

app = Flask(__name__)
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:////tmp/test.db'
db = SQLAlchemy(app)

class Person(db.Model):
 id = db.Column(db.Integer, primary_key=True)
 name = db.Column(db.Unicode, unique=True)
 birth_date = db.Column(db.Date)
 computers = db.relationship('Computer',
 backref=db.backref('owner',
 lazy='dynamic'))

class Computer(db.Model):
 id = db.Column(db.Integer, primary_key=True)
 name = db.Column(db.Unicode, unique=True)
 vendor = db.Column(db.Unicode)
 owner_id = db.Column(db.Integer, db.ForeignKey('person.id'))
 purchase_time = db.Column(db.DateTime)

Also suppose we have registered an API for these models at /api/person and
/api/computer, respectively.

Note

For all requests that would return a list of results, the top-level JSON
object is a mapping from "objects" to the list. JSON lists are not sent
as top-level objects for security reasons. For more information, see this [http://flask.pocoo.org/docs/security/#json-security].

	
GET /api/person

	Gets a list of all Person objects.

Sample response:

HTTP/1.1 200 OK

{
 "num_results": 8,
 "total_pages": 3,
 "page": 2,
 "objects": [{"id": 1, "name": "Jeffrey", "age": 24}, ...]
}

	
GET /api/person?q=<searchjson>

	Gets a list of all Person objects which meet the criteria of the
specified search. For more information on the format of the value of the
q parameter, see Making search queries.

Sample response:

HTTP/1.1 200 OK

{
 "num_results": 8,
 "total_pages": 3,
 "page": 2,
 "objects": [{"id": 1, "name": "Jeffrey", "age": 24}, ...]
 }

	
GET /api/person/(int: id)

	Gets a single instance of Person with the specified ID.

Sample response:

HTTP/1.1 200 OK

{"id": 1, "name": "Jeffrey", "age": 24}

	
GET /api/person/(int: id)/computers

	Gets a list of all Computer objects which are owned by the Person
object with the specified ID.

Sample response:

HTTP/1.1 200 OK

{
 "num_results": 2,
 "total_pages": 1,
 "page": 1,
 "objects": [{"id": 1, "vendor": "Apple", "name": "MacBook", ...}, ...]
}

	
DELETE /api/person/(int: id)

	Deletes the instance of Person with the specified ID.

Sample response:

HTTP/1.1 204 No Content

	
POST /api/person

	Creates a new person with initial attributes specified as a JSON string in
the body of the request.

Sample request:

POST /api/person HTTP/1.1
Host: example.com

{"name": "Jeffrey", "age": 24}

Sample response:

HTTP/1.1 201 Created

{
 "id": 1,
 "name": "Jeffrey",
 "age" 24,
 "computers": []
}

The server will respond with 400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] if the request specifies
a field which does not exist on the model.

To create a new person which includes a related list of new computer
instances via a one-to-many relationship, a request must take the following
form.

Sample request:

POST /api/person HTTP/1.1
Host: example.com

{
 "name": "Jeffrey",
 "age": 24,
 "computers":
 [
 {"manufacturer": "Dell", "model": "Inspiron"},
 {"manufacturer": "Apple", "model": "MacBook"}
]
}

Sample response:

HTTP/1.1 201 Created

{
 "id": 1,
 "name": "Jeffrey",
 "age": 24,
 "computers":
 [
 {"id": 1, "manufacturer": "Dell", "model": "Inspiron"},
 {"id": 2, "manufacturer": "Apple", "model": "MacBook"}
]
}

Warning

The response does not denote that new instances have been created for the
Computer models.

To create a new person which includes a single related new computer
instance (via a one-to-one relationship), a request must take the following
form.

Sample request:

POST /api/person HTTP/1.1
Host: example.com

{
 "name": "Jeffrey",
 "age": 24,
 "computer": {"manufacturer": "Dell", "model": "Inspiron"}
}

Sample response:

HTTP/1.1 201 Created

{
 "name": "Jeffrey",
 "age": 24,
 "id": 1,
 "computer": {"id": 1, "manufacturer": "Dell", "model": "Inspiron"}
}

Warning

The response does not denote that a new Computer instance has been
created.

To create a new person which includes a related list of existing
computer instances via a one-to-many relationship, a request must take the
following form.

Sample request:

POST /api/person HTTP/1.1
Host: example.com

{
 "name": "Jeffrey",
 "age": 24,
 "computers": [{"id": 1}, {"id": 2}]
}

Sample response:

HTTP/1.1 201 Created

{
 "id": 1,
 "name": "Jeffrey",
 "age": 24,
 "computers":
 [
 {"id": 1, "manufacturer": "Dell", "model": "Inspiron"},
 {"id": 2, "manufacturer": "Apple", "model": "MacBook"}
]
}

To create a new person which includes a single related existing computer
instance (via a one-to-one relationship), a request must take the following
form.

Sample request:

POST /api/person HTTP/1.1
Host: example.com

{
 "name": "Jeffrey",
 "age": 24,
 "computer": {"id": 1}
}

Sample response:

HTTP/1.1 201 Created

{
 "name": "Jeffrey",
 "age": 24,
 "id": 1,
 "computer": {"id": 1, "manufacturer": "Dell", "model": "Inspiron"}
}

	
PATCH /api/person

	

	
PUT /api/person

	Sets specified attributes on every instance of Person which meets the
search criteria described in the q parameter.

The JSON object specified in the body of a PATCH [http://tools.ietf.org/html/rfc5789#section-2] request to
this endpoint may include a mapping from q to the parameters for a search,
as described in Making search queries. If no q key exists, then all
instances of the model will be patched.

PUT /api/person is an alias for PATCH /api/person, because
the latter is more semantically correct but the former is part of the core
HTTP standard.

The response will return a JSON object which specifies the number of
instances in the Person database which were modified.

Sample request:

Suppose the database contains exactly three people with the letter “y” in
his or her name.

PATCH /api/person HTTP/1.1
Host: example.com

{
 "age": 1,
 "q": {"filters": [{"name": "name", "op": "like", "val": "%y%"}]}
}

Sample response:

HTTP/1.1 201 Created

{"num_modified": 3}

	
PATCH /api/person/(int: id)

	

	
PUT /api/person/(int: id)

	Sets specified attributes on the instance of Person with the specified
ID number. PUT /api/person/1 is an alias for
PATCH /api/person/1, because the latter is more semantically correct
but the former is part of the core HTTP standard.

Sample request:

PATCH /api/person/1 HTTP/1.1
Host: example.com

{"name": "Foobar"}

Sample response:

HTTP/1.1 200 OK

{"id": 1, "name": "Foobar", "age": 24}

The server will respond with 400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] if the request specifies
a field which does not exist on the model.

To add a list of existing objects to a one-to-many relationship, a request
must take the following form.

Sample request:

PATCH /api/person/1 HTTP/1.1
Host: example.com

{ "computers":
 {
 "add": [{"id": 1}]
 }
}

Sample response:

HTTP/1.1 200 OK

{
 "id": 1,
 "name": "Jeffrey",
 "age": 24,
 "computers": [{"id": 1, "manufacturer": "Dell", "model": "Inspiron"}]
}

To add a list of new objects to a one-to-many relationship, a request must
take the following form.

Sample request:

PATCH /api/person/1 HTTP/1.1
Host: example.com

{ "computers":
 {
 "add": [{"manufacturer": "Dell", "model": "Inspiron"}]
 }
}

Warning

The response does not denote that a new instance has been created for the
Computer model.

Sample response:

HTTP/1.1 200 OK

{
 "id": 1,
 "name": "Jeffrey",
 "age": 24,
 "computers": [{"id": 1, "manufacturer": "Dell", "model": "Inspiron"}]
}

Similarly, to add a new or existing instance of a related model to a
one-to-one relationship, a request must take the following form.

Sample request:

PATCH /api/person/1 HTTP/1.1
Host: example.com

{ "computers":
 {
 "add": {"id": 1}
 }
}

Sample response:

HTTP/1.1 200 OK

{
 "id": 1,
 "name": "Jeffrey",
 "age": 24,
 "computers": [{"id": 1, "manufacturer": "Dell", "model": "Inspiron"}]
}

To remove an existing object (without deleting that object from its own
database) from a one-to-many relationship, a request must take the following
form.

Sample request:

PATCH /api/person/1 HTTP/1.1
Host: example.com

{ "computers":
 {
 "remove": [{"id": 2}]
 }
}

Sample response:

HTTP/1.1 200 OK

{
 "id": 1,
 "name": "Jeffrey",
 "age": 24,
 "computers": [
 {"id": 1, "manufacturer": "Dell", "model": "Inspiron 9300"},
 {"id": 3, "manufacturer": "Apple", "model": "MacBook"}
]
}

To remove an existing object from a one-to-many relationship and
additionally delete it from its own database, a request must take the
following form.

Sample request:

PATCH /api/person/1 HTTP/1.1
Host: example.com

{ "computers":
 {
 "remove": [{"id": 2, "__delete__": true}]
 }
}

Warning

The response does not denote that the instance was deleted from its own
database.

Sample response:

HTTP/1.1 200 OK

{
 "id": 1,
 "name": "Jeffrey",
 "age": 24,
 "computers": [
 {"id": 1, "manufacturer": "Dell", "model": "Inspiron 9300"},
 {"id": 3, "manufacturer": "Apple", "model": "MacBook"}
]
}

To set the value of a one-to-many relationship to contain either existing or
new instances of the related model, a request must take the following form.

Sample request:

PATCH /api/person/1 HTTP/1.1
Host: example.com

{ "computers":
 [
 {"id": 1},
 {"id": 3},
 {"manufacturer": "Lenovo", "model": "ThinkPad"}
]
}

Sample response:

HTTP/1.1 200 OK

{
 "id": 1,
 "name": "Jeffrey",
 "age": 24,
 "computers": [
 {"id": 1, "manufacturer": "Dell", "model": "Inspiron 9300"},
 {"id": 3, "manufacturer": "Apple", "model": "MacBook"}
 {"id": 4, "manufacturer": "Lenovo", "model": "ThinkPad"}
]
}

To set the value of a one-to-many relationship and update fields on
existing instances of the related model, a request must take the following
form.

Suppose the Person instance looked like this before the sample
PATCH [http://tools.ietf.org/html/rfc5789#section-2] request below:

HTTP/1.1 200 OK

{
 "id": 1,
 "name": "Jeffrey",
 "age": 24,
 "computers": [
 {"id": 1, "manufacturer": "Apple", "model": "MacBook"}
]
}

Sample request:

PATCH /api/person/1 HTTP/1.1
Host: example.com

{ "computers":
 [
 {"id": 1, "manufacturer": "Lenovo", "model": "ThinkPad"}
]
}

Sample response:

HTTP/1.1 200 OK

{
 "id": 1,
 "name": "Jeffrey",
 "age": 24,
 "computers": [
 {"id": 1, "manufacturer": "Lenovo", "model": "ThinkPad"}
]
}

The changes reflected in this response have been made to the Computer
instance with ID 1.

Error messages

Most errors return 400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1]. A bad request, for example, will
receive a response like this:

HTTP/1.1 400 Bad Request

{"message": "Unable to decode data"}

Function evaluation

If the allow_functions keyword argument is set to True when creating an
API for a model using APIManager.create_api(), then an endpoint will be
made available for GET /api/eval/person which responds to requests for
evaluation of functions on all instances the model.

Sample request:

GET /api/eval/person?q={"functions": [{"name": "sum", "field": "age"}, {"name": "avg", "field": "height"}]} HTTP/1.1

The format of the response is

HTTP/1.1 200 OK

{"sum__age": 100, "avg_height": 68}

If no functions are specified in the request, the response will contain
the empty JSON object, {}.

Note

The functions whose names are given in the request will be evaluated using
SQLAlchemy’s func [http://docs.sqlalchemy.org/en/latest/core/expression_api.html#sqlalchemy.sql.expression.func]
object.

Example

To get the total number of rows in the query (that is, the number of
instances of the requested model), use count as the name of the function
to evaluate, and id for the field on which to evaluate it:

Request:

GET /api/eval/person?q={"functions": [{"name": "count", "field": "id"}]} HTTP/1.1

Response:

HTTP/1.1 200 OK

{"count__id": 5}

JSON-P callbacks

Add a callback=myfunc query parameter to the request URL on any
GET [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3] requests (including endpoints for function evaluation) to
have the JSON data of the response wrapped in the Javascript function
myfunc. This can be used to circumvent some cross domain scripting security
issues. For example, a request like this:

GET /api/person/1?callback=foo HTTP/1.1

will produce a response like this:

HTTP/1.1 200 OK

foo({"id": 1, "name": "Henry", "age": 10})

Then in your Javascript code, write the function foo like this:

function foo(response) {
 var name = response.name;
 console.log(name);
}

Pagination

Responses to GET [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3] requests are paginated by default, with at most
ten objects per page. To request a specific page, add a page=N query
parameter to the request URL, where N is a positive integer (the first page
is page one). If no page query parameter is specified, the first page will
be returned.

In order to specify the number of results per page, add the query parameter
results_per_page=N where N is a positive integer. If
results_per_page is greater than the maximum number of results per page as
configured by the server (see Server-side pagination), then the query
parameter will be ignored.

In addition to the "objects" list, the response JSON object will have a
"page" key whose value is the current page, a "num_pages" key whose
value is the total number of pages into which the set of matching instances is
divided, and a "num_results" key whose value is the total number of
instances which match the requested search. For example, a request to
GET /api/person?page=2 will result in the following response:

HTTP/1.1 200 OK

{
 "num_results": 8,
 "page": 2,
 "num_pages": 3,
 "objects": [{"id": 1, "name": "Jeffrey", "age": 24}, ...]
}

If pagination is disabled (by setting results_per_page=None in
APIManager.create_api(), for example), any page key in the query
parameters will be ignored, and the response JSON will include a "page" key
which always has the value 1.

Note

As specified in in Query format, clients can receive responses with
limit (a maximum number of objects in the response) and offset (the
number of initial objects to skip in the response) applied. It is possible,
though not recommended, to use pagination in addition to limit and
offset. For simple clients, pagination should be fine.

 Copyright 2012 Jeffrey Finkelstein.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.12.0

 	0.11.0

 	0.10.1

 	0.10.0

 	0.9.3

 	0.9.2

 	0.9.1

 	0.9.0

 	0.8.0

 	0.7.0

 	0.6

 	0.5

 	0.4

 	0.3

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Flask-Restless 0.10.1 documentation

API

This part of the documentation documents all the public classes and functions
in Flask-Restless.

 Copyright 2012 Jeffrey Finkelstein.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.12.0

 	0.11.0

 	0.10.1

 	0.10.0

 	0.9.3

 	0.9.2

 	0.9.1

 	0.9.0

 	0.8.0

 	0.7.0

 	0.6

 	0.5

 	0.4

 	0.3

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Flask-Restless 0.10.1 documentation

Copyright and license

Flask-Restless is copyright 2011 Lincoln de Sousa and copyright 2012 Jeffrey
Finkelstein, and is dual-licensed under the following two copyright licenses:

	the GNU Affero General Public License [http://fsf.org/licenses/agpl.html],
either version 3 or (at your option) any later version

	the 3-clause BSD License

For more information, see the files LICENSE.AGPL and
LICENSE.BSD in top-level directory of the source distribution.

The artwork for Flask-Restless is copyright 2012 Jeffrey Finkelstein. The couch
logo is licensed under the Creative Commons Attribute-ShareAlike 3.0 license [http://creativecommons.org/licenses/by-sa/3.0]. The original image is a
scan of a (now public domain) illustration by Arthur Hopkins in a serial
edition of “The Return of the Native” by Thomas Hardy published in October
1878. The couch logo with the “Flask-Restless” text is licensed under the
Flask Artwork License [http://flask.pocoo.org/docs/license/#flask-artwork-license].

The documentation is licensed under the Creative Commons Attribute-ShareAlike
3.0 license [http://creativecommons.org/licenses/by-sa/3.0].

 Copyright 2012 Jeffrey Finkelstein.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.12.0

 	0.11.0

 	0.10.1

 	0.10.0

 	0.9.3

 	0.9.2

 	0.9.1

 	0.9.0

 	0.8.0

 	0.7.0

 	0.6

 	0.5

 	0.4

 	0.3

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 previous |

 	Flask-Restless 0.10.1 documentation

Changelog

Here you can see the full list of changes between each Flask-Restless release.
Numbers following a pound sign (#) refer to GitHub issues [https://github.com/jfinkels/flask-restless/issues].

Note

As of version 0.6, Flask-Restless supports both pure SQLAlchemy and
Flask-SQLAlchemy models. Before that, it supported only Elixir models.

Version 0.10.1

Released on May 8, 2013.

	#115: change assertEqual() methods to assert statements in tests.

	#184, #186: Switch to nose [http://nose.readthedocs.org] for testing.

	#197: documents technique for adding filters in processors when there are
none initially.

Version 0.10.0

Released on April 30, 2013.

	#2: adds basic GET [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3] access to one level of relationship depth
for models.

	#113: interpret empty strings for date fields as None objects.

	#115: use Python’s built-in assert statements for testing

	#128: allow disjunctions when filtering search queries.

	#130: documentation and examples now more clearly show search examples.

	#135: added support for hybrid properties.

	#139: remove custom code for authentication in favor of user-defined pre- and
postprocessors (this supercedes the fix from #154).

	#141: relax requirement for version of python-dateutil [http://labix.org/python-dateutil] to be not equal to 2.0 if using Python
version 2.6 or 2.7.

	#146: preprocessors now really execute before other code.

	#148: adds support for SQLAlchemy association proxies [http://docs.sqlalchemy.org/en/latest/orm/extensions/associationproxy.html].

	#154 (this fix is irrelevant due to #139): authentication function now may
raise an exception instead of just returning a Boolean.

	#157: POST [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5] requests now receive a response containing all
fields of the created instance.

	#162: allow pre- and postprocessors to indicate that no change has occurred.

	#164, #172, and #173: PATCH [http://tools.ietf.org/html/rfc5789#section-2] requests update fields on related
instances.

	#165: fixed bug in automatic exposing of URLs for related instances.

	#170: respond with correct HTTP status codes when a query for a single
instance results in none or multiple instances.

	#174: allow dynamically loaded relationships for automatically exposed URLs
of related instances.

	#176: get model attribute instead of column name when getting name of primary
key.

	#182: allow POST [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5] requests that set hybrid properties.

	#152: adds some basic server-side logging for exceptions raised by views.

Version 0.9.3

Released on February 4, 2013.

	Fixes incompatibility with Python 2.5 try/except syntax.

	#116: handle requests which raise IntegrityError [http://sqlalchemy.org/docs/core/exceptions.html#sqlalchemy.exc.IntegrityError].

Version 0.9.2

Released on February 4, 2013.

	#82, #134, #136: added request pre- and postprocessors.

	#120: adds support for JSON-P callbacks in GET [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3] requests.

Version 0.9.1

Released on January 17, 2013.

	#126: fix documentation build failure due to bug in a dependency.

	#127: added “ilike” query operator.

Version 0.9.0

Released on January 16, 2013.

	Removed ability to provide a Session [http://sqlalchemy.org/docs/orm/session.html#sqlalchemy.orm.session.Session] class
when initializing APIManager; provide an instance of the class
instead.

	Changes some dynamically loaded relationships used for testing and in
examples to be many-to-one instead of the incorrect one-to-many. Versions of
SQLAlchemy after 0.8.0b2 raise an exception when the latter is used.

	#105: added ability to set a list of related model instances on a model.

	#107: server responds with an error code when a PATCH [http://tools.ietf.org/html/rfc5789#section-2] or
POST [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5] request specifies a field which does not exist on the
model.

	#108: dynamically loaded relationships should now be rendered correctly by
the views._to_dict() function regardless of whether they are a list or
a single object.

	#109: use sphinxcontrib-issuetracker [https://sphinxcontrib-issuetracker.readthedocs.org/en/latest] to render links to GitHub issues in
documentation.

	#110: enable results_per_page query parameter for clients, and added
max_results_per_page keyword argument to APIManager.create_api().

	#114: fix bug where string representations of integers were converted to
integers.

	#117: allow adding related instances on PATCH [http://tools.ietf.org/html/rfc5789#section-2] requests for
one-to-one relationships.

	#123: PATCH [http://tools.ietf.org/html/rfc5789#section-2] requests to instances which do not exist result in
a 404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] response.

Version 0.8.0

Released on November 19, 2012.

	#94: views._to_dict() should return a single object instead of a list
when resolving dynamically loaded many-to-one relationships.

	#104: added num_results key to paginated JSON responses.

Version 0.7.0

Released on October 9, 2012.

	Added working include and exclude functionality to the
views._to_dict() function.

	Added exclude_columns keyword argument to APIManager.create_api().

	#79: attempted to access attribute of None in constructor of
APIManager.

	#83: allow POST [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5] requests with one-to-one related instances.

	#86: allow specifying include and exclude for related models.

	#91: correctly handle POST [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5] requests to nullable
DateTime columns.

	#93: Added a total_pages mapping to the JSON response.

	#98: GET [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3] requests to the function evaluation endpoint should
not have a data payload.

	#101: exclude in views._to_dict() function now correctly excludes
requested fields from the returned dictionary.

Version 0.6

Released on June 20, 2012.

	Added support for accessing model instances via arbitrary primary keys,
instead of requiring an integer column named id.

	Added example which uses curl as a client.

	Added support for pagination of responses.

	Fixed issue due to symbolic link from README to README.md
when running pip bundle foobar Flask-Restless.

	Separated API blueprint creation from registration, using
APIManager.create_api() and APIManager.create_api_blueprint().

	Added support for pure SQLAlchemy in addition to Flask-SQLAlchemy.

	#74: Added post_form_preprocessor keyword argument to
APIManager.create_api().

	#77: validation errors are now correctly handled on PATCH [http://tools.ietf.org/html/rfc5789#section-2]
requests.

Version 0.5

Released on April 10, 2012.

	Dual-licensed under GNU AGPLv3+ and 3-clause BSD license.

	Added capturing of exceptions raised during field validation.

	Added examples/separate_endpoints.py, showing how to create separate
API endpoints for a single model.

	Added include_columns keyword argument to
create_api() method to allow users to
specify which columns of the model are exposed in the API.

	Replaced Elixir with Flask-SQLAlchemy. Flask-Restless now only supports
Flask-SQLAlchemy.

Version 0.4

Released on March 29, 2012.

	Added Python 2.5 and Python 2.6 support.

	Allow users to specify which HTTP methods for a particular API will require
authentication and how that authentication will take place.

	Created base classes for test cases.

	Moved the evaluate_functions function out of the
flask_restless.search module and corrected documentation about how
function evaluation works.

	Added allow_functions keyword argument to
create_api().

	Fixed bug where we weren’t allowing PUT requests in
create_api().

	Added collection_name keyword argument to
create_api() to allow user provided names in
URLs.

	Added allow_patch_many keyword argument to
create_api() to allow enabling or disabling
the PATCH many functionality.

	Disable the PATCH many functionality by default.

Version 0.3

Released on March 4, 2012.

	Initial release in Flask extension format.

 Copyright 2012 Jeffrey Finkelstein.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.12.0

 	0.11.0

 	0.10.1

 	0.10.0

 	0.9.3

 	0.9.2

 	0.9.1

 	0.9.0

 	0.8.0

 	0.7.0

 	0.6

 	0.5

 	0.4

 	0.3

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	Flask-Restless 0.10.1 documentation

 HTTP Routing Table

 /api

 			

 		
 /api	

 	
 	
 GET /api/person	

 	
 	
 PATCH /api/person	

 	
 	
 PUT /api/person	

 	
 	
 POST /api/person	

 	
 	
 GET /api/person/(int:id)	

 	
 	
 PATCH /api/person/(int:id)	

 	
 	
 PUT /api/person/(int:id)	

 	
 	
 DELETE /api/person/(int:id)	

 	
 	
 GET /api/person/(int:id)/computers	

 	
 	
 GET /api/person?q=<searchjson>	

 Copyright 2012 Jeffrey Finkelstein.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.12.0

 	0.11.0

 	0.10.1

 	0.10.0

 	0.9.3

 	0.9.2

 	0.9.1

 	0.9.0

 	0.8.0

 	0.7.0

 	0.6

 	0.5

 	0.4

 	0.3

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	Flask-Restless 0.10.1 documentation

 Python Module Index

 f

 			

 		
 f	

 	[image: -]
 	
 flask	

 	
 	
 flask.ext.restless	

 Copyright 2012 Jeffrey Finkelstein.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.12.0

 	0.11.0

 	0.10.1

 	0.10.0

 	0.9.3

 	0.9.2

 	0.9.1

 	0.9.0

 	0.8.0

 	0.7.0

 	0.6

 	0.5

 	0.4

 	0.3

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	Flask-Restless 0.10.1 documentation

Index

 F

F

 	

 	flask.ext.restless (module)

 Copyright 2012 Jeffrey Finkelstein.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.12.0

 	0.11.0

 	0.10.1

 	0.10.0

 	0.9.3

 	0.9.2

 	0.9.1

 	0.9.0

 	0.8.0

 	0.7.0

 	0.6

 	0.5

 	0.4

 	0.3

 _static/minus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		Flask-Restless 0.10.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012 Jeffrey Finkelstein.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

 		0.12.0

 		0.11.0

 		0.10.1

 		0.10.0

 		0.9.3

 		0.9.2

 		0.9.1

 		0.9.0

 		0.8.0

 		0.7.0

 		0.6

 		0.5

 		0.4

 		0.3

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/flask-restless.png
Flask-
7 M4 Restless

_static/down.png

_static/plus.png

_static/comment.png

_static/ajax-loader.gif

_static/flask-restless-small.png

_static/file.png

_static/down-pressed.png

