
logo.pdf

Flask-Restless Documentation
Release 0.17.0
February 12, 2016

Contents

I User’s guide 3

1 Downloading and installing Flask-Restless 5

2 Quickstart 7

3 Creating API endpoints 9
3.1 Initializing the Flask application after creating the API manager 12

4 Customizing the ReSTful interface 15
4.1 HTTP methods . 15
4.2 API prefix . 16
4.3 Collection name . 16
4.4 Specifying one of many primary keys . 17
4.5 Enable bulk patching or deleting . 17
4.6 Custom serialization . 17
4.7 Capturing validation errors . 18
4.8 Exposing evaluation of SQL functions . 19
4.9 Specifying which columns are provided in responses 19
4.10 Server-side pagination . 21
4.11 Request preprocessors and postprocessors 22
4.12 Custom queries . 27

5 Making search queries 31
5.1 Quick examples . 31
5.2 Query format . 32
5.3 Operators . 33
5.4 Examples . 34

6 Format of requests and responses 39
6.1 Date and time fields . 49
6.2 Errors and error messages . 49
6.3 Function evaluation . 49

i

6.4 JSONP callbacks . 50
6.5 Pagination . 51

II API reference 53

7 API 55

III Additional information 63

8 Similar projects 65

9 Copyright and license 67

10 Changelog 69
10.1 Version 0.17.0 . 69
10.2 Version 0.16.0 . 70
10.3 Version 0.15.1 . 70
10.4 Version 0.15.0 . 70
10.5 Version 0.14.2 . 70
10.6 Version 0.14.1 . 71
10.7 Version 0.14.0 . 71
10.8 Version 0.13.1 . 71
10.9 Version 0.13.0 . 71
10.10 Version 0.12.1 . 72
10.11 Version 0.12.0 . 73
10.12 Version 0.11.0 . 73
10.13 Version 0.10.1 . 73
10.14 Version 0.10.0 . 74
10.15 Version 0.9.3 . 75
10.16 Version 0.9.2 . 75
10.17 Version 0.9.1 . 75
10.18 Version 0.9.0 . 75
10.19 Version 0.8.0 . 76
10.20 Version 0.7.0 . 76
10.21 Version 0.6 . 76
10.22 Version 0.5 . 77
10.23 Version 0.4 . 77
10.24 Version 0.3 . 78

ii

Flask-Restless provides simple generation of ReSTful APIs for database models de-
fined using SQLAlchemy (or Flask-SQLAlchemy). The generated APIs send and re-
ceive messages in JSON format.

1

2

Part I

USER’S GUIDE

3

4

CHAPTER 1

Downloading and installing
Flask-Restless

Flask-Restless can be downloaded from its page on the Python Package Index. The
development version can be downloaded from its page at GitHub. However, it is
better to install with pip (hopefully in a virtual environment provided by virtualenv):

pip install Flask-Restless

Flask-Restless requires Python version 2.6, 2.7, or 3.3. Python 3.2 is not supported by
Flask and therefore cannot be supported by Flask-Restless.

Flask-Restless has the following dependencies (which will be automatically installed
if you use pip):

• Flask version 0.10 or greater

• SQLAlchemy version 0.8 or greater

• mimerender version 0.5.2 or greater

• python-dateutil version strictly greater than 2.0

• Flask-SQLAlchemy, only if you want to define your models using Flask-
SQLAlchemy (which we highly recommend)

5

http://pypi.python.org/pypi/Flask-Restless
http://github.com/jfinkels/flask-restless
http://flask.pocoo.org
http://sqlalchemy.org
http://mimerender.readthedocs.org
http://labix.org/python-dateutil
http://packages.python.org/Flask-SQLAlchemy

6

CHAPTER 2

Quickstart

For the restless:

1 import flask
2 import flask.ext.sqlalchemy
3 import flask.ext.restless
4

5 # Create the Flask application and the Flask-SQLAlchemy object.
6 app = flask.Flask(__name__)
7 app.config['DEBUG'] = True
8 app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:////tmp/test.db'
9 db = flask.ext.sqlalchemy.SQLAlchemy(app)

10

11 # Create your Flask-SQLALchemy models as usual but with the following two
12 # (reasonable) restrictions:
13 # 1. They must have a primary key column of type sqlalchemy.Integer or
14 # type sqlalchemy.Unicode.
15 # 2. They must have an __init__ method which accepts keyword arguments for
16 # all columns (the constructor in flask.ext.sqlalchemy.SQLAlchemy.Model
17 # supplies such a method, so you don't need to declare a new one).
18 class Person(db.Model):
19 id = db.Column(db.Integer, primary_key=True)
20 name = db.Column(db.Unicode, unique=True)
21 birth_date = db.Column(db.Date)
22

23

24 class Computer(db.Model):
25 id = db.Column(db.Integer, primary_key=True)
26 name = db.Column(db.Unicode, unique=True)
27 vendor = db.Column(db.Unicode)
28 purchase_time = db.Column(db.DateTime)
29 owner_id = db.Column(db.Integer, db.ForeignKey('person.id'))
30 owner = db.relationship('Person', backref=db.backref('computers',
31 lazy='dynamic'))
32

33

7

34 # Create the database tables.
35 db.create_all()
36

37 # Create the Flask-Restless API manager.
38 manager = flask.ext.restless.APIManager(app, flask_sqlalchemy_db=db)
39

40 # Create API endpoints, which will be available at /api/<tablename> by
41 # default. Allowed HTTP methods can be specified as well.
42 manager.create_api(Person, methods=['GET', 'POST', 'DELETE'])
43 manager.create_api(Computer, methods=['GET'])
44

45 # start the flask loop
46 app.run()

You may find this example at examples/quickstart.py in the source distribution; you
may also view it online at GitHub.

Further examples can be found in the examples/ directory in the source distribution or
on the web.

8

https://github.com/jfinkels/flask-restless/tree/master/examples/quickstart.py
https://github.com/jfinkels/flask-restless/tree/master/examples

CHAPTER 3

Creating API endpoints

To use this extension, you must have defined your database models using either
SQLAlchemy or Flask-SQLALchemy.

The basic setup for Flask-SQLAlchemy is the same. First, create your flask.Flask
object, flask.ext.sqlalchemy.SQLAlchemy object, and model classes as usual but with
the following two (reasonable) restrictions on models:

1. They must have a primary key column of type sqlalchemy.Integer or type
sqlalchemy.Unicode.

2. They must have an __init__ method which accepts keyword arguments for all
columns (the constructor in flask.ext.sqlalchemy.SQLAlchemy.Model supplies
such a method, so you don’t need to declare a new one).

import flask
import flask.ext.sqlalchemy

app = flask.Flask(__name__)
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:////tmp/test.db'
db = flask.ext.sqlalchemy.SQLAlchemy(app)

class Person(db.Model):
id = db.Column(db.Integer, primary_key=True)
name = db.Column(db.Unicode, unique=True)
birth_date = db.Column(db.Date)
computers = db.relationship('Computer',

backref=db.backref('owner',
lazy='dynamic'))

class Computer(db.Model):
id = db.Column(db.Integer, primary_key=True)
name = db.Column(db.Unicode, unique=True)
vendor = db.Column(db.Unicode)
owner_id = db.Column(db.Integer, db.ForeignKey('person.id'))
purchase_time = db.Column(db.DateTime)

9

http://flask.pocoo.org/docs/api/#flask.Flask

db.create_all()

If you are using pure SQLAlchemy:

from flask import Flask
from sqlalchemy import Column, Date, DateTime, Float, Integer, Unicode
from sqlalchemy import ForeignKey
from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import backref, relationship
from sqlalchemy.orm import scoped_session, sessionmaker

app = Flask(__name__)
engine = create_engine('sqlite:////tmp/testdb.sqlite', convert_unicode=True)
Session = sessionmaker(autocommit=False, autoflush=False, bind=engine)
mysession = scoped_session(Session)

Base = declarative_base()
Base.metadata.bind = engine

class Computer(Base):
__tablename__ = 'computer'
id = Column(Integer, primary_key=True)
name = Column(Unicode, unique=True)
vendor = Column(Unicode)
buy_date = Column(DateTime)
owner_id = Column(Integer, ForeignKey('person.id'))

class Person(Base):
__tablename__ = 'person'
id = Column(Integer, primary_key=True)
name = Column(Unicode, unique=True)
age = Column(Float)
other = Column(Float)
birth_date = Column(Date)
computers = relationship('Computer',

backref=backref('owner', lazy='dynamic'))

Base.metadata.create_all()

Warning: Attributes of these entities must not have a name containing two under-
scores. For example, this class definition is no good:

class Person(db.Model):
__mysecretfield = db.Column(db.Unicode)

This restriction is necessary because the search feature (see Making search queries)
uses double underscores as a separator. This may change in future versions.

10

Second, instantiate a flask.ext.restless.APIManager object with the Flask and
SQLAlchemy objects:

import flask.ext.restless

manager = flask.ext.restless.APIManager(app, flask_sqlalchemy_db=db)

Or if you are using pure SQLAlchemy, specify the session you created above instead:

manager = flask.ext.restless.APIManager(app, session=mysession)

Third, create the API endpoints which will be accessible to web clients:

person_blueprint = manager.create_api(Person,
methods=['GET', 'POST', 'DELETE'])

computer_blueprint = manager.create_api(Computer)

Note that you can specify which HTTP methods are available for each API endpoint.
There are several more customization options; for more information, see Customizing
the ReSTful interface.

Due to the design of Flask, these APIs must be created before your application handles
any requests. The return value of APIManager.create_api() is the blueprint in which
the endpoints for the specified database model live. The blueprint has already been
registered on the Flask application, so you do not need to register it yourself. It is
provided so that you can examine its attributes, but if you don’t need it then just
ignore it:

manager.create_api(Person, methods=['GET', 'POST', 'DELETE'])
manager.create_api(Computer)

If you wish to create the blueprint for the API without registering it (for example, if you
wish to register it later in your code), use the APIManager.create_api_blueprint()
method instead:

blueprint = manager.create_api_blueprint(Person, methods=['GET', 'POST'])
later...
app.register_blueprint(blueprint)

By default, the API for Person, in the above code samples, will be accessible at
http://<host>:<port>/api/person, where the person part of the URL is the value of
Person.__tablename__:

>>> import json # import simplejson as json, if on Python 2.5
>>> import requests # python-requests is installable from PyPI...
>>> newperson = {'name': u'Lincoln', 'age': 23}
>>> r = requests.post('/api/person', data=json.dumps(newperson),
... headers={'content-type': 'application/json'})
>>> r.status_code, r.headers['content-type'], r.data
(201, 'application/json', '{"id": 1}')
>>> newid = json.loads(r.data)['id']
>>> r = requests.get('/api/person/%s' % newid,
... headers={'content-type': 'application/json'})

11

http://flask.pocoo.org/docs/api/#flask.Flask
http://flask.pocoo.org/docs/api/#flask.Flask

>>> r.status_code, r.headers['content-type']
(200, 'application/json')
>>> r.data
{
"other": null,
"name": "Lincoln",
"birth_date": null,
"age": 23.0,
"computers": [],
"id": 1

}

If the primary key is a Unicode instead of an Integer, the instances will be ac-
cessible at URL endpoints like http://<host>:<port>/api/person/foo instead of
http://<host>:<port>/api/person/1.

3.1 Initializing the Flask application after creating the API
manager

Instead of providing the Flask application at instantiation time, you can initial-
ize the Flask application after instantiating the APIManager object by using the
APIManager.init_app() method. If you do this, you will need to provide the Flask
application object using the app keyword argument to the APIManager.create_api()
method:

from flask import Flask
from flask.ext.restless import APIManager
from flask.ext.sqlalchemy import SQLAlchemy

app = Flask(__name__)
db = SQLAlchemy(app)
manager = APIManager(flask_sqlalchemy_db=db)

later...

manager.init_app(app)
manager.create_api(Person, app=app)

You can also use this approach to initialize multiple Flask applications with a single
instance of APIManager. For example:

from flask import Flask
from flask.ext.restless import APIManager
from flask.ext.sqlalchemy import SQLAlchemy

Create two Flask applications, both backed by the same database.
app1 = Flask(__name__)
app2 = Flask(__name__ + '2')

12

app1.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:////tmp/test.db'
app2.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:////tmp/test.db'
db = SQLAlchemy(app1)

Create the Flask-SQLAlchemy models.
class Person(db.Model):

id = db.Column(db.Integer, primary_key=True)
name = db.Column(db.Unicode, unique=True)
birth_date = db.Column(db.Date)
computers = db.relationship('Computer',

backref=db.backref('owner',
lazy='dynamic'))

class Computer(db.Model):
id = db.Column(db.Integer, primary_key=True)
name = db.Column(db.Unicode, unique=True)
vendor = db.Column(db.Unicode)
owner_id = db.Column(db.Integer, db.ForeignKey('person.id'))
purchase_time = db.Column(db.DateTime)

Create the database tables.
db.create_all()

Create the APIManager and initialize it with the different Flask objects.
manager = APIManager(flask_sqlalchemy_db=db)
manager.init_app(app1)
manager.init_app(app2)

When creating each API, you need to specify which Flask application
should be handling these requests.
manager.create_api(Person, app=app1)
manager.create_api(Computer, app=app2)

Finally, you can also create an API before initializing the Flask application. For example:

manager = APIManager()
manager.create_api(Person)
manager.init_app(app, session=session)

Changed in version 0.16.0: The APIManager.init_app() method behaved incorrectly
before version 0.16.0. From that version on, you must provide the Flask application
when you call APIManager.create_api() after having performed the delayed initial-
ization described in this section.

13

14

CHAPTER 4

Customizing the ReSTful interface

4.1 HTTP methods

By default, the APIManager.create_api() method creates a read-only interface; re-
quests with HTTP methods other than GET will cause a response with 405 Method
Not Allowed. To explicitly specify which methods should be allowed for the end-
point, pass a list as the value of keyword argument methods:

apimanager.create_api(Person, methods=['GET', 'POST', 'DELETE'])

This creates an endpoint at /api/person which responds to GET, POST, and DELETE
methods, but not to other ones like PUT or PATCH.

The recognized HTTP methods and their semantics are described below (assuming
you have created an API for an entity Person). All endpoints which respond with data
respond with serialized JSON strings.

GET /api/person
Returns a list of all Person instances.

GET /api/person/(int: id)
Returns a single Person instance with the given id.

GET /api/person?q=<searchjson>
Returns a list of all Person instances which match the search query specified in
the query parameter q. For more information on searching, see Making search
queries.

DELETE /api/person/(int: id)
Deletes the person with the given id and returns 204 No Content.

DELETE /api/person
This is only available if the allow_delete_many keyword argument is set to True
when calling the create_api() method. For more information, see Enable bulk
patching or deleting.

15

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.6
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.6
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.7
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.6
http://tools.ietf.org/html/rfc5789#section-2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5

Deletes all instances of Person that match the search query provided in the q URL
query paremeter. For more information on search parameters, see Making search
queries.

POST /api/person
Creates a new person in the database and returns its id. The initial attributes of
the Person are read as JSON from the body of the request. For information about
the format of this request, see Format of requests and responses.

PATCH /api/person/(int: id)
Updates the attributes of the Person with the given id. The attributes are read
as JSON from the body of the request. For information about the format of this
request, see Format of requests and responses.

PATCH /api/person
This is only available if the allow_patch_many keyword argument is set to True
when calling the create_api() method. For more information, see Enable bulk
patching or deleting.

Updates the attributes of all Person instances. The attributes are read as JSON
from the body of the request. For information about the format of this request,
see Format of requests and responses.

PUT /api/person

PUT /api/person/(int: id)
Aliases for PATCH /api/person and PATCH /api/person/(int:id).

4.2 API prefix

To create an API at a different prefix, use the url_prefix keyword argument:

apimanager.create_api(Person, url_prefix='/api/v2')

Then your API for Person will be available at /api/v2/person.

4.3 Collection name

By default, the name of the collection which appears in the URLs of the API will be the
name of the table that backs your model. If your model is a SQLAlchemy model, this
will be the value of its __tablename__ attribute. If your model is a Flask-SQLAlchemy
model, this will be the lowercase name of the model with camel case changed to all-
lowercase with underscore separators. For example, a class named MyModel implies
a collection name of ’my_model’. Furthermore, the URL at which this collection is
accessible by default is /api/my_model.

To provide a different name for the model, provide a string to the collection_name key-
word argument of the APIManager.create_api() method:

16

apimanager.create_api(Person, collection_name='people')

Then the API will be exposed at /api/people instead of /api/person.

4.4 Specifying one of many primary keys

If your model has more than one primary key (one called id and one called username,
for example), you should specify the one to use:

manager.create_api(User, primary_key='username')

If you do this, Flask-Restless will create URLs like /api/user/myusername instead of
/api/user/137.

4.5 Enable bulk patching or deleting

By default, a PATCH /api/person request (note the missing ID) will cause a 405 Method
Not Allowed response. By setting the allow_patch_many keyword argument of the
APIManager.create_api() method to be True, PATCH /api/person requests will patch
the provided attributes on all instances of Person:

apimanager.create_api(Person, methods=['PATCH'], allow_patch_many=True)

If search parameters are provided via the q query parameter as described in Making
search queries, only those instances matching the search will be patched.

Similarly, to allow bulk deletions, set the allow_delete_many keyword argument to be
True.

4.6 Custom serialization

New in version 0.17.0.

Flask-Restless provides very basic object serialization and deserialization. If you wish
to have more control over the way instances of your models are converted to Python
dictionary representations, you can specify a custom serialization function by provid-
ing it to APIManager.create_api() via the serializer keyword argument. Similarly,
to provide a deserialization function that converts a Python dictionary representation
to an instance of your model, use the deserializer keyword argument.

The serialization function must take a single argument representing the instance of
the model to serialize, and must return a dictionary representation of that instance.
The deserialization function must take a single argument representing the dictionary
representation of an instance of the model and must return an instance of model that
has those attributes.

17

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.6
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.6

We strongly suggest using a Python object serialization library instead of writing your
own serialization functions.

For example, if you create schema for your database models using Marshmallow),
then you use that library’s built-in serialization functions as follows:

class PersonSchema(Schema):
id = fields.Integer()
name = fields.String()

def make_object(self, data):
print('MAKING OBJECT FROM', data)
return Person(**data)

person_schema = PersonSchema()

def person_serializer(instance):
return person_schema.dump(instance).data

def person_deserializer(data):
return person_schema.load(data).data

manager = APIManager(app, session=session)
manager.create_api(Person, methods=['GET', 'POST'],

serializer=person_serializer,
deserializer=person_deserializer)

For a complete version of this example, see the
examples/server_configurations/custom_serialization.py module in the source
distribution, or view it online at GitHub.

4.7 Capturing validation errors

By default, no validation is performed by Flask-Restless; if you want validation, imple-
ment it yourself in your database models. However, by specifying a list of exceptions
raised by your backend on validation errors, Flask-Restless will forward messages
from raised exceptions to the client in an error response.

A reasonable validation framework you might use for this purpose is SQLAlchemy
Validation. You can also use the validates() decorator that comes with SQLAlchemy.

For example, if your validation framework includes an exception called
ValidationError, then call the APIManager.create_api() method with the
validation_exceptions keyword argument:

from cool_validation_framework import ValidationError
apimanager.create_api(Person, validation_exceptions=[ValidationError])

Note: Currently, Flask-Restless expects that an instance of a specified validation error

18

https://marshmallow.readthedocs.org
https://github.com/jfinkels/flask-restless/tree/master/examples/server_configurations/custom_serialization.py
https://bitbucket.org/blazelibs/sqlalchemy-validation
https://bitbucket.org/blazelibs/sqlalchemy-validation
http://sqlalchemy.org/docs/orm/mapped_attributes.html#sqlalchemy.orm.validates

will have a errors attribute, which is a dictionary mapping field name to error de-
scription (note: one error per field). If you have a better, more general solution to this
problem, please visit our issue tracker.

Now when you make POST and PATCH requests with invalid fields, the JSON re-
sponse will look like this:

HTTP/1.1 400 Bad Request

{ "validation_errors":
{

"age": "Must be an integer",
}

}

Currently, Flask-Restless can only forward one exception at a time to the client.

4.8 Exposing evaluation of SQL functions

If the allow_functions keyword argument is set to True when creating an API for a
model using APIManager.create_api(), then an endpoint will be made available for
GET /api/eval/person which responds to requests for evaluation of functions on all
instances the model.

For information about the request and response formats for this endpoint, see Function
evaluation.

4.9 Specifying which columns are provided in responses

By default, all columns of your model will be exposed by the API. If the
include_columns keyword argument is an iterable of strings, only columns with those
names (that is, the strings represent the names of attributes of the model which are
Column objects) will be provided in JSON responses for GET requests.

For example, if your models are defined like this (using Flask-SQLAlchemy):

class Person(db.Model):
id = db.Column(db.Integer, primary_key=True)
name = db.Column(db.Unicode, unique=True)
birth_date = db.Column(db.Date)
computers = db.relationship('Computer')

and you want your JSON responses to include only the values of the name and
birth_date columns, create your API with the following arguments:

apimanager.create_api(Person, include_columns=['name', 'birth_date'])

19

https://github.com/jfinkels/flask-restless/issues
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5
http://tools.ietf.org/html/rfc5789#section-2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3

Now requests like GET /api/person/1 will return JSON objects which look like this:

{"name": "Jeffrey", "birth_date": "1999-12-31"}

The exclude_columns keyword argument works similarly; it forces your JSON re-
sponses to include only the columns not specified in exclude_columns. For example:

apimanager.create_api(Person, exclude_columns=['name', 'birth_date'])

will produce responses like:

{"id": 1, "computers": [{"id": 1, "vendor": "Apple", "model": "MacBook"}]}

In this example, the Person model has a one-to-many relationship with the Computer
model. To specify which columns on the related models will be included or excluded,
include a string of the form ’<relation>.<column>’, where <relation> is the name of
the relationship attribute of the model and <column> is the name of the column on the
related model which you want to be included or excluded. For example:

includes = ['name', 'birth_date', 'computers', 'computers.vendor']
apimanager.create_api(Person, include_columns=includes)

will produce responses like:

{
"name": "Jeffrey",
"birth_date": "1999-12-31",
"computers": [{"vendor": "Apple"}]

}

An attempt to include a field on a related model without including the relationship
field has no effect:

includes = ['name', 'birth_date', 'computers.vendor']
apimanager.create_api(Person, include_columns=includes)

{"name": "Jeffrey", "birth_date": "1999-12-31"}

To include the return value of an arbitrary method defined on a model, use the
include_methods keyword argument. This argument must be an iterable of strings
representing methods with no arguments (other than self) defined on the model for
which the API will be created:

class Person(Base):
__tablename__ = 'person'
id = Column(Integer, primary_key=True)
name = Column(Unicode)
age = Column(Integer)

def name_and_age(self):
return "%s (aged %d)" % (self.name, self.age)

20

include_methods = ['name_and_age']
manager.create_api(Person, include_methods=['name_and_age'])

A response to a GET request will then look like this:

{
"id": 1,
"name": "Paul McCartney",
"age": 64,
"name_and_age": "Paul McCartney (aged 64)"

}

4.10 Server-side pagination

To set the default number of results returned per page, use the results_per_page key-
word argument to the APIManager.create_api() method. The default number of re-
sults per page is ten. The client can override the number of results per page by using
a query parameter in its GET request; see Pagination.

To set the maximum number of results returned per page, use the
max_results_per_page keyword argument. Even if results_per_page >
max_results_per_page, at most max_results_per_page will be returned. The
same is true if the client specifies results_per_page as a query argument;
max_results_per_page provides an upper bound.

If max_results_per_page is set to anything but a positive integer, the client will be able
to specify arbitrarily large page sizes. If, further, results_per_page is set to anything
but a positive integer, pagination will be disabled by default, and any GET request
which does not specify a page size in its query parameters will get a response with all
matching results.

Attention: Disabling pagination can result in large responses!

For example, to set each page to include only two results:

apimanager.create_api(Person, results_per_page=2)

Then a request to GET /api/person will return a JSON object which looks like this:

{
"num_results": 6,
"total_pages": 3,
"page": 1,
"objects": [
{"name": "Jeffrey", "id": 1},
{"name": "John", "id": 2}

]
}

21

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3

For more information on using pagination in the client, see Pagination.

4.11 Request preprocessors and postprocessors

To apply a function to the request parameters and/or body before the request is pro-
cessed, use the preprocessors keyword argument. To apply a function to the response
data after the request is processed (immediately before the response is sent), use the
postprocessors keyword argument. Both preprocessors and postprocessors must be
a dictionary which maps HTTP method names as strings (with exceptions as described
below) to a list of functions. The specified functions will be applied in the order given
in the list.

Since GET and PATCH (and PUT) requests can be made not only on individual in-
stances of the model but also the entire collection of instances, you must separately
specify which functions to apply in the individual case and which to apply in the col-
lection case. For example:

Define pre- and postprocessor functions as described below.
def pre_get_single(**kw): pass
def pre_get_many(**kw): pass
def post_patch_many(**kw): pass
def pre_delete(**kw): pass

Create an API for the Person model.
manager.create_api(Person,

Allow GET, PATCH, and POST requests.
methods=['GET', 'PATCH', 'DELETE'],
Allow PATCH requests modifying the whole collection.
allow_patch_many=True,
A list of preprocessors for each method.
preprocessors={

'GET_SINGLE': [pre_get_single],
'GET_MANY': [pre_get_many],
'DELETE': [pre_delete]
},

A list of postprocessors for each method.
postprocessors={

'PATCH_MANY': [post_patch_many]
}

)

As introduced in the above example, the dictionary keys for the preprocessors and post-
processors can be one of the following strings:

• ’POST’ for requests to post a new instance of the model.

• ’GET_SINGLE’ for requests to get a single instance of the model.

• ’GET_MANY’ for requests to get multiple instances of the model.

22

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3
http://tools.ietf.org/html/rfc5789#section-2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.6

• ’PATCH_SINGLE’ or ’PUT_SINGLE’ for requests to patch a single instance of the
model.

• ’PATCH_MANY’ or ’PUT_MANY’ for requests to patch multiple instances of the
model.

• ’DELETE_SINGLE’ for requests to delete an instance of the model.

• ’DELETE_MANY’ for requests to delete multiple instances of the model.

Note: Since PUT requests are handled by the PATCH handler, any preprocessors or
postprocessors specified for the PUT method will be applied on PATCH requests after
the preprocessors or postprocessors specified for the PATCH method.

The preprocessors and postprocessors for each type of request accept different argu-
ments. Most of them should have no return value (more specifically, any returned
value is ignored). The return value from each of the GET_SINGLE, PATCH_SINGLE,
and DELETE_SINGLE preprocessors is interpreted as a value with which to replace
instance_id, the variable containing the value of the primary key of the requested
instance of the model. For example, if a request for GET /api/person/1 encounters a
preprocessor (for GET_SINGLE) that returns the integer 8, Flask-Restless will continue to
process the request as if it had received GET /api/person/8. (If multiple preprocessors
are specified for a single HTTP method and each one has a return value, Flask-Restless
will only remember the value returned by the last preprocessor function.)

Those preprocessors and postprocessors that accept dictionaries as parameters can
(and should) modify their arguments in-place. That means the changes made to, for
example, the result dictionary will be seen by the Flask-Restless view functions and
ultimately returned to the client.

The arguments to the preprocessor and postprocessor functions will be provided as
keyword arguments, so you should always add **kw as the final argument when
defining a preprocessor or postprocessor function. This way, you can specify only
the keyword arguments you need when defining your functions. Furthermore, if a
new version of Flask-Restless changes the API, you can update Flask-Restless without
breaking your code.

Changed in version 0.16.0: Replaced DELETE with DELETE_MANY and DELETE_SINGLE.

New in version 0.13.0: Functions provided as postprocessors for GET_MANY and
PATCH_MANY requests receive the search_params keyword argument, so that both pre-
processors and postprocessors have access to this information.

• GET for a single instance:

def get_single_preprocessor(instance_id=None, **kw):
"""Accepts a single argument, `instance_id`, the primary key of the
instance of the model to get.

"""
pass

23

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.6
http://tools.ietf.org/html/rfc5789#section-2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.6
http://tools.ietf.org/html/rfc5789#section-2
http://tools.ietf.org/html/rfc5789#section-2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3

def get_single_postprocessor(result=None, **kw):
"""Accepts a single argument, `result`, which is the dictionary
representation of the requested instance of the model.

"""
pass

and for the collection:

def get_many_preprocessor(search_params=None, **kw):
"""Accepts a single argument, `search_params`, which is a dictionary
containing the search parameters for the request.

"""
pass

def get_many_postprocessor(result=None, search_params=None, **kw):
"""Accepts two arguments, `result`, which is the dictionary
representation of the JSON response which will be returned to the
client, and `search_params`, which is a dictionary containing the
search parameters for the request (that produced the specified
`result`).

"""
pass

• PATCH (or PUT) for a single instance:

def patch_single_preprocessor(instance_id=None, data=None, **kw):
"""Accepts two arguments, `instance_id`, the primary key of the
instance of the model to patch, and `data`, the dictionary of fields
to change on the instance.

"""
pass

def patch_single_postprocessor(result=None, **kw):
"""Accepts a single argument, `result`, which is the dictionary
representation of the requested instance of the model.

"""
pass

and for the collection:

def patch_many_preprocessor(search_params=None, data=None, **kw):
"""Accepts two arguments: `search_params`, which is a dictionary
containing the search parameters for the request, and `data`, which
is a dictionary representing the fields to change on the matching
instances and the values to which they will be set.

"""

24

http://tools.ietf.org/html/rfc5789#section-2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.6

pass

def patch_many_postprocessor(query=None, data=None, search_params=None,
**kw):

"""Accepts three arguments: `query`, which is the SQLAlchemy query
which was inferred from the search parameters in the query string,
`data`, which is the dictionary representation of the JSON response
which will be returned to the client, and `search_params`, which is a
dictionary containing the search parameters for the request.

"""
pass

• POST:

def post_preprocessor(data=None, **kw):
"""Accepts a single argument, `data`, which is the dictionary of
fields to set on the new instance of the model.

"""
pass

def post_postprocessor(result=None, **kw):
"""Accepts a single argument, `result`, which is the dictionary
representation of the created instance of the model.

"""
pass

• DELETE for a single instance:

def delete_single_preprocessor(instance_id=None, **kw):
"""Accepts a single argument, `instance_id`, which is the primary key
of the instance which will be deleted.

"""
pass

def delete_postprocessor(was_deleted=None, **kw):
"""Accepts a single argument, `was_deleted`, which represents whether
the instance has been deleted.

"""
pass

and for the collection:

def delete_many_preprocessor(search_params=None, **kw):
"""Accepts a single argument, `search_params`, which is a dictionary
containing the search parameters for the request.

"""

25

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.7

pass

def delete_many_postprocessor(result=None, search_params=None, **kw):
"""Accepts two arguments: `result`, which is the dictionary
representation of which is the dictionary representation of the JSON
response which will be returned to the client, and `search_params`,
which is a dictionary containing the search parameters for the
request.

"""
pass

Note: For more information about search parameters, see Making search queries, and
for more information about request and response formats, see Format of requests and
responses.

In order to halt the preprocessing or postprocessing and return an error response
directly to the client, your preprocessor or postprocessor functions can raise a
ProcessingException. If a function raises this exception, no preprocessing or post-
processing functions that appear later in the list specified when the API was created
will be invoked. For example, an authentication function can be implemented like
this:

def check_auth(instance_id=None, **kw):
Here, get the current user from the session.
current_user = ...
Next, check if the user is authorized to modify the specified
instance of the model.
if not is_authorized_to_modify(current_user, instance_id):

raise ProcessingException(description='Not Authorized',
code=401)

manager.create_api(Person, preprocessors=dict(GET_SINGLE=[check_auth]))

The ProcessingException allows you to specify an HTTP status code for the generated
response and an error message which the client will receive as part of the JSON in the
body of the response.

4.11.1 Universal preprocessors and postprocessors

New in version 0.13.0.

The previous section describes how to specify a preprocessor or postprocessor on a
per-API (that is, a per-model) basis. If you want a function to be executed for all APIs
created by a APIManager, you can use the preprocessors or postprocessors keyword
arguments in the constructor of the APIManager class. These keyword arguments have
the same format as the corresponding ones in the APIManager.create_api() method
as described above. Functions specified in this way are prepended to the list of pre-
processors or postprocessors specified in the APIManager.create_api() method.

26

This may be used, for example, if all POST requests require authentication:

from flask import Flask
from flask.ext.restless import APIManager
from flask.ext.restless import ProcessingException
from flask.ext.login import current_user
from mymodels import User
from mymodels import session

def auth_func(*args, **kw):
if not current_user.is_authenticated():

raise ProcessingException(description='Not authenticated!', code=401)

app = Flask(__name__)
api_manager = APIManager(app, session=session,

preprocessors=dict(POST=[auth_func]))
api_manager.create_api(User)

4.11.2 Preprocessors for collections

When the server receives, for example, a request for GET /api/person, Flask-Restless
interprets this request as a search with no filters (that is, a search for all instances of
Person without exception). In other words, GET /api/person is roughly equivalent
to GET /api/person?q={}. Therefore, if you want to filter the set of Person instances
returned by such a request, you can create a preprocessor for a GET request to the
collection endpoint that appends filters to the search_params keyword argument. For
example:

def preprocessor(search_params=None, **kw):
This checks if the preprocessor function is being called before a
request that does not have search parameters.
if search_params is None:

return
Create the filter you wish to add; in this case, we include only
instances with ``id`` not equal to 1.
filt = dict(name='id', op='neq', val=1)
Check if there are any filters there already.
if 'filters' not in search_params:

search_params['filters'] = []
Append your filter to the list of filters.
search_params['filters'].append(filt)

apimanager.create_api(Person, preprocessors=dict(GET_MANY=[preprocessor]))

4.12 Custom queries

In cases where it is not possible to use preprocessors or postprocessors (Request pre-
processors and postprocessors) efficiently, you can provide a custom query attribute

27

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3

to your model instead. The attribute can either be a SQLAlchemy query expres-
sion or a class method that returns a SQLAlchemy query expression. Flask-Restless
will use this query attribute internally, however it is defined, instead of the default
session.query(Model) (in the pure SQLAlchemy case) or Model.query (in the Flask-
SQLAlchemy case). Flask-Restless uses a query during most GET and PATCH requests
to find the model(s) being requested.

You may want to use a custom query attribute if you want to reveal only certain in-
formation to the client. For example, if you have a set of people and you only want
to reveal information about people from the group named “students”, define a query
class method this way:

class Group(Base):
__tablename__ = 'group'
id = Column(Integer, primary_key=True)
groupname = Column(Unicode)
people = relationship('Person')

class Person(Base):
__tablename__ = 'person'
id = Column(Integer, primary_key=True)
group_id = Column(Integer, ForeignKey('group.id'))
group = relationship('Group')

@classmethod
def query(cls):

original_query = session.query(cls)
condition = (Group.groupname == 'students')
return original_query.join(Group).filter(condition)

Then requests to, for example, GET /api/person will only reveal instances of Person
who also are in the group named “students”.

4.12.1 Requiring authentication for some methods

If you want certain HTTP methods to require authentication, use preprocessors:

from flask import Flask
from flask.ext.restless import APIManager
from flask.ext.restless import NO_CHANGE
from flask.ext.restless import ProcessingException
from flask.ext.login import current_user
from mymodels import User

def auth_func(*args, **kwargs):
if not current_user.is_authenticated():

raise ProcessingException(description='Not authenticated!', code=401)
return True

app = Flask(__name__)

28

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3
http://tools.ietf.org/html/rfc5789#section-2

api_manager = APIManager(app)
api_manager.create_api(User, preprocessors=dict(GET_SINGLE=[auth_func],

GET_MANY=[auth_func]))

For a more complete example using Flask-Login, see the
examples/server_configurations/authentication directory in the source distri-
bution, or view it online at GitHub.

4.12.2 Enabling Cross-Origin Resource Sharing (CORS)

Cross-Origin Resource Sharing (CORS) is a protocol that allows JavaScript HTTP
clients to make HTTP requests across Internet domain boundaries while still pro-
tecting against cross-site scripting (XSS) attacks. If you have access to the HTTP
server that serves your Flask application, I recommend configuring CORS there, since
such concerns are beyond the scope of Flask-Restless. However, in case you need
to support CORS at the application level, you should create a function that adds
the necessary HTTP headers after the request has been processed by Flask-Restless
(that is, just before the HTTP response is sent from the server to the client) using the
flask.Blueprint.after_request() method:

from flask import Flask
from flask.ext.restless import APIManager

def add_cors_headers(response):
response.headers['Access-Control-Allow-Origin'] = 'example.com'
response.headers['Access-Control-Allow-Credentials'] = 'true'
Set whatever other headers you like...
return response

app = Flask(__name__)
manager = APIManager(app)
blueprint = manager.create_api(Person)
blueprint.after_request(add_cors_headers)

29

https://github.com/jfinkels/flask-restless/tree/master/examples/server_configurations/authentication
http://enable-cors.org
http://flask.pocoo.org/docs/api/#flask.Blueprint.after_request

30

CHAPTER 5

Making search queries

Clients can make GET requests on individual instances of a model (for example, GET
/api/person/1) and on collections of all instances of a model (GET /api/person). To
get all instances of a model that meet some criteria, clients can make GET requests
with a query parameter specifying a search. The search functionality in Flask-Restless
is relatively simple, but should suffice for many cases.

5.1 Quick examples

The following are some quick examples of creating search queries with different types
of clients. Find more complete documentation in subsequent sections. In these exam-
ples, each client will search for instances of the model Person whose names contain
the letter “y”.

Using the Python requests library:

import requests
import json

url = 'http://127.0.0.1:5000/api/person'
headers = {'Content-Type': 'application/json'}

filters = [dict(name='name', op='like', val='%y%')]
params = dict(q=json.dumps(dict(filters=filters)))

response = requests.get(url, params=params, headers=headers)
assert response.status_code == 200
print(response.json())

Using jQuery:

var filters = [{"name": "id", "op": "like", "val": "%y%"}];
$.ajax({

url: 'http://127.0.0.1:5000/api/person',

31

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3
http://docs.python-requests.org/en/latest/
http://jquery.com/

data: {"q": JSON.stringify({"filters": filters})},
dataType: "json",
contentType: "application/json",
success: function(data) { console.log(data.objects); }

});

Using curl:

curl \
-G \
-H "Content-type: application/json" \
-d "q={\"filters\":[{\"name\":\"name\",\"op\":\"like\",\"val\":\"%y%\"}]}" \
http://127.0.0.1:5000/api/person

The examples/ directory has more complete versions of these examples.

5.2 Query format

The query parameter q must be a JSON string. It can have the following mappings, all
of which are optional:

filters A list of objects of one of the following forms:

{"name": <fieldname>, "op": <operatorname>, "val": <argument>}

or:

{"name": <fieldname>, "op": <operatorname>, "field": <fieldname>}

In the first form, <operatorname> is one of the strings described in the Operators
section, the first <fieldname> is the name of the field of the model to which to
apply the operator, <argument> is a value to be used as the second argument to
the given operator. In the second form, the second <fieldname> is the field of the
model that should be used as the second argument to the operator.

<fieldname> may alternately specify a field on a related model, if it is a string of
the form <relationname>__<fieldname>.

If the field name is the name of a relation and the operator is "has" or "any", the
"val" argument can be a dictionary with the arguments representing another
filter to be applied as the argument for "has" or "any".

The returned list of matching instances will include only those instances that
satisfy all of the given filters.

Filter objects can also be arbitrary Boolean formulas. For example:

{"or": [<filterobject>, {"and": [<filterobject>, ...]}, ...]}

limit A positive integer which specifies the maximum number of objects to return.

32

http://curl.haxx.se/

offset A positive integer which specifies the offset into the result set of the returned
list of instances.

order_by A list of objects of the form:

{"field": <fieldname>, "direction": <directionname>}

where <fieldname> is a string corresponding to the name of a field of the re-
quested model and <directionname> is either "asc" for ascending order or
"desc" for descending order.

<fieldname> may alternately specify a field on a related model, if it is a string of
the form <relationname>__<fieldname>.

group_by A list of objects of the form:

{"field": <fieldname>}

where <fieldname> is a string corresponding to the name of a field of the re-
quested model.

<fieldname> may alternately specify a field on a related model, if it is a string of
the form <relationname>__<fieldname>.

New in version 0.16.0.

single A Boolean representing whether a single result is expected as a result of the
search. If this is true and either no results or multiple results meet the criteria of
the search, the server responds with an error message.

If a filter is poorly formatted (for example, op is set to ’==’ but val is not set), the server
responds with 400 Bad Request.

Changed in version 0.17.0: Removed the disjunction mapping in favor of a more
robust Boolean expression system.

5.3 Operators

The operator strings recognized by the API incude:

• ==, eq, equals, equals_to

• !=, neq, does_not_equal, not_equal_to

• >, gt, <, lt

• >=, ge, gte, geq, <=, le, lte, leq

• in, not_in

• is_null, is_not_null

• like

• has

33

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

• any

These correspond to SQLAlchemy column operators as defined here.

5.4 Examples

Consider a Person model available at the URL /api/person, and suppose all of the
following requests are GET /api/person requests with query parameter q.

5.4.1 Attribute greater than a value

On request:

GET /api/person?q={"filters":[{"name":"age","op":"ge","val":10}]} HTTP/1.1
Host: example.com

the response will include only those Person instances that have age attribute greater
than or equal to 10:

HTTP/1.1 200 OK

{
"num_results": 8,
"total_pages": 3,
"page": 2,
"objects":
[
{"id": 1, "name": "Jeffrey", "age": 24},
{"id": 2, "name": "John", "age": 13},
{"id": 3, "name": "Mary", "age": 18}

]
}

5.4.2 Arbitrary Boolean expression of filters

On request:

GET /api/person?q={"filters":[{"or":[{"name":"age","op":"lt","val":10},{"name":"age","op":"gt","val":20}]}]} HTTP/1.1
Host: example.com

the response will include only those Person instances that have age attribute either less
than 10 or greater than 20:

HTTP/1.1 200 OK

{
"num_results": 3,
"total_pages": 1,

34

http://docs.sqlalchemy.org/en/latest/core/expression_api.html#sqlalchemy.sql.operators.ColumnOperators

"page": 1,
"objects":
[
{"id": 4, "name": "Abraham", "age": 9},
{"id": 5, "name": "Isaac", "age": 25},
{"id": 6, "name": "Job", "age": 37}

]
}

5.4.3 Attribute between two values

On request:

GET /api/person?q={"filters":[{"name":"age","op":"ge","val":10},{"name":"age","op":"le","val":20}]} HTTP/1.1
Host: example.com

the response will include only those Person instances that have age attribute between
10 and 20, inclusive:

HTTP/1.1 200 OK

{
"num_results": 6,
"total_pages": 3,
"page": 2,
"objects":
[
{"id": 2, "name": "John", "age": 13},
{"id": 3, "name": "Mary", "age": 18}

]
}

5.4.4 Expecting a single result

On request:

GET /api/person?q={"filters":[{"name":"id","op":"eq","val":1}],"single":true} HTTP/1.1
Host: example.com

the response will include only the sole Person instance with id equal to 1:

HTTP/1.1 200 OK

{"id": 1, "name": "Jeffrey", "age": 24}

In the case that the search would return no results or more than one result, an error
response is returned instead:

35

GET /api/person?q={"filters":[{"name":"age","op":"ge","val":10}],"single":true} HTTP/1.1
Host: example.com

HTTP/1.1 400 Bad Request

{"message": "Multiple results found"}

GET /api/person?q={"filters":[{"name":"id","op":"eq","val":-1}],"single":true} HTTP/1.1
Host: example.com

HTTP/1.1 404 Bad Request

{"message": "No result found"}

5.4.5 Comparing two attributes

On request:

GET /api/person?q={"filters":[{"name":"age","op":"ge","field":"height"}]} HTTP/1.1
Host: example.com

the response will include only those Person instances that have age attribute greater
than or equal to the value of the height attribute:

HTTP/1.1 200 OK

{
"num_results": 6,
"total_pages": 3,
"page": 2,
"objects":
[
{"id": 1, "name": "John", "age": 80, "height": 65},
{"id": 2, "name": "Mary", "age": 73, "height": 60}

]
}

5.4.6 Comparing attribute of a relation

On request:

GET /api/person?q={"filters":[{"name":"computers__manufacturer","op":"any","val":"Apple"}],"single":true} HTTP/1.1
Host: example.com

response will include only those Person instances that are related to any Computer
model that is manufactured by Apple:

36

HTTP/1.1 200 OK

{
"num_results": 6,
"total_pages": 3,
"page": 2,
"objects":
{
"id": 1,
"name": "John",
"computers": [
{ "id": 1, "manufacturer": "Dell", "model": "Inspiron 9300"},
{ "id": 2, "manufacturer": "Apple", "model": "MacBook"}

]
},
{
"id": 2,
"name": "Mary",
"computers": [
{ "id": 3, "manufacturer": "Apple", "model": "iMac"}

]
}

]
}

5.4.7 Using has and any

Use the has and any operators to search for instances by fields on related instances.
For example, you can search for all Person instances that have a related Computer with
a certain ID number by using the any operator. For another example, you can search
for all Computer instances that have an owner with a certain name by using the has op-
erator. In general, use the any operator if the relation is a list of objects and use the has
operator if the relation is a single object. For more information, see the SQLAlchemy
documentation.

On request:

GET /api/person?q={"filters":[{"name":"computers","op":"any","val":{"name":"id","op":"gt","val":1}}]} HTTP/1.1
Host: example.com

the response will include only those Person instances that have a related Computer
instance with id field of value greater than 1:

HTTP/1.1 200 OK

{
"num_results": 6,
"total_pages": 3,
"page": 2,
"objects":

37

[
{"id": 1, "name": "John", "age": 80, "height": 65, "computers": [...]},
{"id": 2, "name": "Mary", "age": 73, "height": 60, "computers": [...]}

]
}

On request:

GET /api/computers?q={"filters":[{"name":"owner","op":"has","val":{"name":"vendor","op":"ilike","val":"%John%"}}]} HTTP/1.1
Host: example.com

the response will include only those Computer instances that have an owner with name
field that includes ’John’:

HTTP/1.1 200 OK

{
"num_results": 6,
"total_pages": 3,
"page": 2,
"objects":
[
{"id": 1, "name": "pluto", vendor="Apple", ...},
{"id": 2, "name": "jupiter", vendor="Dell", ...}

]
}

38

CHAPTER 6

Format of requests and responses

Requests and responses are all in JSON format, so the mimetype is application/json.
Ensure that requests you make that require a body (PATCH and POST requests) have
the header Content-Type: application/json; if they do not, the server will respond
with a 415 Unsupported Media Type.

Suppose we have the following Flask-SQLAlchemy models (the example works with
pure SQLALchemy just the same):

from flask import Flask
from flask.ext.sqlalchemy import SQLAlchemy

app = Flask(__name__)
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:////tmp/test.db'
db = SQLAlchemy(app)

class Person(db.Model):
id = db.Column(db.Integer, primary_key=True)
name = db.Column(db.Unicode, unique=True)
birth_date = db.Column(db.Date)
computers = db.relationship('Computer',

backref=db.backref('owner',
lazy='dynamic'))

class Computer(db.Model):
id = db.Column(db.Integer, primary_key=True)
name = db.Column(db.Unicode, unique=True)
vendor = db.Column(db.Unicode)
owner_id = db.Column(db.Integer, db.ForeignKey('person.id'))
purchase_time = db.Column(db.DateTime)

Also suppose we have registered an API for these models at /api/person and
/api/computer, respectively.

Note: API endpoints do not have trailing slashes. A request to, for example,

39

http://tools.ietf.org/html/rfc5789#section-2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.16

/api/person/ will result in a 404 Not Found response.

Note: For all requests that would return a list of results, the top-level JSON object is
a mapping from "objects" to the list. JSON lists are not sent as top-level objects for
security reasons. For more information, see this.

GET /api/person
Gets a list of all Person objects.

Sample response:

HTTP/1.1 200 OK

{
"num_results": 8,
"total_pages": 3,
"page": 2,
"objects": [{"id": 1, "name": "Jeffrey", "age": 24}, ...]

}

GET /api/person?q=<searchjson>
Gets a list of all Person objects which meet the criteria of the specified search.
For more information on the format of the value of the q parameter, see Making
search queries.

Sample response:

HTTP/1.1 200 OK

{
"num_results": 8,
"total_pages": 3,
"page": 2,
"objects": [{"id": 1, "name": "Jeffrey", "age": 24}, ...]

}

GET /api/person/(int: id)
Gets a single instance of Person with the specified ID.

Sample response:

HTTP/1.1 200 OK

{"id": 1, "name": "Jeffrey", "age": 24}

GET /api/person/(int: id)/computers
Gets a list of all Computer objects which are owned by the Person object with the
specified ID.

Sample response:

40

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://flask.pocoo.org/docs/security/#json-security

HTTP/1.1 200 OK

{
"num_results": 2,
"total_pages": 1,
"page": 1,
"objects": [{"id": 1, "vendor": "Apple", "name": "MacBook", ...}, ...]

}

DELETE /api/person/(int: id)
Deletes the instance of Person with the specified ID.

Sample response:

HTTP/1.1 204 No Content

DELETE /api/person/(int: id)/computers/
int: id Removes the instance of Computer with the specified ID from the computers
collection of the instance of Person with the specified ID. This is essentially
a shortcut to using a PATCH /api/person/(int:id)/computers request with a
remove parameter in the body of the request.

Sample response:

HTTP/1.1 204 No Content

POST /api/person
Creates a new person with initial attributes specified as a JSON string in the body
of the request.

Sample request:

POST /api/person HTTP/1.1
Host: example.com

{"name": "Jeffrey", "age": 24}

Sample response:

HTTP/1.1 201 Created

{
"id": 1,
"name": "Jeffrey",
"age" 24,
"computers": []

}

The server will respond with 400 Bad Request if the request specifies a field
which does not exist on the model.

To create a new person which includes a related list of new computer instances
via a one-to-many relationship, a request must take the following form.

41

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

Sample request:

POST /api/person HTTP/1.1
Host: example.com

{
"name": "Jeffrey",
"age": 24,
"computers":
[
{"manufacturer": "Dell", "model": "Inspiron"},
{"manufacturer": "Apple", "model": "MacBook"}

]
}

Sample response:

HTTP/1.1 201 Created

{
"id": 1,
"name": "Jeffrey",
"age": 24,
"computers":
[
{"id": 1, "manufacturer": "Dell", "model": "Inspiron"},
{"id": 2, "manufacturer": "Apple", "model": "MacBook"}

]
}

Warning: The response does not denote that new instances have been created
for the Computer models.

To create a new person which includes a single related new computer instance
(via a one-to-one relationship), a request must take the following form.

Sample request:

POST /api/person HTTP/1.1
Host: example.com

{
"name": "Jeffrey",
"age": 24,
"computer": {"manufacturer": "Dell", "model": "Inspiron"}

}

Sample response:

HTTP/1.1 201 Created

{

42

"name": "Jeffrey",
"age": 24,
"id": 1,
"computer": {"id": 1, "manufacturer": "Dell", "model": "Inspiron"}

}

Warning: The response does not denote that a new Computer instance has
been created.

To create a new person which includes a related list of existing computer in-
stances via a one-to-many relationship, a request must take the following form.

Sample request:

POST /api/person HTTP/1.1
Host: example.com

{
"name": "Jeffrey",
"age": 24,
"computers": [{"id": 1}, {"id": 2}]

}

Sample response:

HTTP/1.1 201 Created

{
"id": 1,
"name": "Jeffrey",
"age": 24,
"computers":
[
{"id": 1, "manufacturer": "Dell", "model": "Inspiron"},
{"id": 2, "manufacturer": "Apple", "model": "MacBook"}

]
}

To create a new person which includes a single related existing computer in-
stance (via a one-to-one relationship), a request must take the following form.

Sample request:

POST /api/person HTTP/1.1
Host: example.com

{
"name": "Jeffrey",
"age": 24,
"computer": {"id": 1}

}

43

Sample response:

HTTP/1.1 201 Created

{
"name": "Jeffrey",
"age": 24,
"id": 1,
"computer": {"id": 1, "manufacturer": "Dell", "model": "Inspiron"}

}

PATCH /api/person

PUT /api/person
Sets specified attributes on every instance of Person which meets the search cri-
teria described in the q parameter.

The JSON object specified in the body of a PATCH request to this endpoint may
include a mapping from q to the parameters for a search, as described in Making
search queries. If no q key exists, then all instances of the model will be patched.

PUT /api/person is an alias for PATCH /api/person, because the latter is more
semantically correct but the former is part of the core HTTP standard.

The response will return a JSON object which specifies the number of instances
in the Person database which were modified.

Sample request:

Suppose the database contains exactly three people with the letter “y” in his or
her name.

PATCH /api/person HTTP/1.1
Host: example.com

{
"age": 1,
"q": {"filters": [{"name": "name", "op": "like", "val": "%y%"}]}

}

Sample response:

HTTP/1.1 200 OK

{"num_modified": 3}

PATCH /api/person/(int: id)

PUT /api/person/(int: id)
Sets specified attributes on the instance of Person with the specified ID number.
PUT /api/person/1 is an alias for PATCH /api/person/1, because the latter is more
semantically correct but the former is part of the core HTTP standard.

Sample request:

44

http://tools.ietf.org/html/rfc5789#section-2

PATCH /api/person/1 HTTP/1.1
Host: example.com

{"name": "Foobar"}

Sample response:

HTTP/1.1 200 OK

{"id": 1, "name": "Foobar", "age": 24}

The server will respond with 400 Bad Request if the request specifies a field
which does not exist on the model.

To add a list of existing objects to a one-to-many relationship, a request must take
the following form.

Sample request:

PATCH /api/person/1 HTTP/1.1
Host: example.com

{ "computers":
{
"add": [{"id": 1}]

}
}

Sample response:

HTTP/1.1 200 OK

{
"id": 1,
"name": "Jeffrey",
"age": 24,
"computers": [{"id": 1, "manufacturer": "Dell", "model": "Inspiron"}]

}

To add a list of new objects to a one-to-many relationship, a request must take
the following form.

Sample request:

PATCH /api/person/1 HTTP/1.1
Host: example.com

{ "computers":
{
"add": [{"manufacturer": "Dell", "model": "Inspiron"}]

}
}

45

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

Warning: The response does not denote that a new instance has been created
for the Computer model.

Sample response:

HTTP/1.1 200 OK

{
"id": 1,
"name": "Jeffrey",
"age": 24,
"computers": [{"id": 1, "manufacturer": "Dell", "model": "Inspiron"}]

}

Similarly, to add a new or existing instance of a related model to a one-to-one
relationship, a request must take the following form.

Sample request:

PATCH /api/person/1 HTTP/1.1
Host: example.com

{ "computers":
{
"add": {"id": 1}

}
}

Sample response:

HTTP/1.1 200 OK

{
"id": 1,
"name": "Jeffrey",
"age": 24,
"computers": [{"id": 1, "manufacturer": "Dell", "model": "Inspiron"}]

}

To remove an existing object (without deleting that object from its own database)
from a one-to-many relationship, a request must take the following form.

Sample request:

PATCH /api/person/1 HTTP/1.1
Host: example.com

{ "computers":
{
"remove": [{"id": 2}]

}
}

46

Sample response:

HTTP/1.1 200 OK

{
"id": 1,
"name": "Jeffrey",
"age": 24,
"computers": [
{"id": 1, "manufacturer": "Dell", "model": "Inspiron 9300"},
{"id": 3, "manufacturer": "Apple", "model": "MacBook"}

]
}

To remove an existing object from a one-to-many relationship and additionally
delete it from its own database, a request must take the following form.

Sample request:

PATCH /api/person/1 HTTP/1.1
Host: example.com

{ "computers":
{
"remove": [{"id": 2, "__delete__": true}]

}
}

Warning: The response does not denote that the instance was deleted from
its own database.

Sample response:

HTTP/1.1 200 OK

{
"id": 1,
"name": "Jeffrey",
"age": 24,
"computers": [
{"id": 1, "manufacturer": "Dell", "model": "Inspiron 9300"},
{"id": 3, "manufacturer": "Apple", "model": "MacBook"}

]
}

To set the value of a one-to-many relationship to contain either existing or new
instances of the related model, a request must take the following form.

Sample request:

PATCH /api/person/1 HTTP/1.1
Host: example.com

47

{ "computers":
[

{"id": 1},
{"id": 3},
{"manufacturer": "Lenovo", "model": "ThinkPad"}

]
}

Sample response:

HTTP/1.1 200 OK

{
"id": 1,
"name": "Jeffrey",
"age": 24,
"computers": [
{"id": 1, "manufacturer": "Dell", "model": "Inspiron 9300"},
{"id": 3, "manufacturer": "Apple", "model": "MacBook"}
{"id": 4, "manufacturer": "Lenovo", "model": "ThinkPad"}

]
}

To set the value of a one-to-many relationship and update fields on existing in-
stances of the related model, a request must take the following form.

Suppose the Person instance looked like this before the sample PATCH request
below:

HTTP/1.1 200 OK

{
"id": 1,
"name": "Jeffrey",
"age": 24,
"computers": [
{"id": 1, "manufacturer": "Apple", "model": "MacBook"}

]
}

Sample request:

PATCH /api/person/1 HTTP/1.1
Host: example.com

{ "computers":
[

{"id": 1, "manufacturer": "Lenovo", "model": "ThinkPad"}
]

}

Sample response:

48

http://tools.ietf.org/html/rfc5789#section-2

HTTP/1.1 200 OK

{
"id": 1,
"name": "Jeffrey",
"age": 24,
"computers": [
{"id": 1, "manufacturer": "Lenovo", "model": "ThinkPad"}

]
}

The changes reflected in this response have been made to the Computer instance
with ID 1.

6.1 Date and time fields

Flask-Restless will automatically parse and convert date and time strings into the cor-
responding Python objects. Flask-Restless also understands intervals (also known as
durations), if you specify the interval as an integer representing the number of seconds
that the interval spans.

If you want the server to set the value of a date or time field of a model as the current
time (as measured at the server), use one of the special strings "CURRENT_TIMESTAMP",
"CURRENT_DATE", or "LOCALTIMESTAMP". When the server receives one of these strings
in a request, it will use the corresponding SQL function to set the date or time of the
field in the model.

6.2 Errors and error messages

Most errors return 400 Bad Request. A bad request, for example, will receive a re-
sponse like this:

HTTP/1.1 400 Bad Request

{"message": "Unable to decode data"}

If your request triggers a SQLAlchemy DataError, IntegrityError, or
ProgrammingError, the session will be rolled back.

6.3 Function evaluation

If the allow_functions keyword argument is set to True when creating an API for a
model using APIManager.create_api(), then an endpoint will be made available for
GET /api/eval/person which responds to requests for evaluation of functions on all
instances the model.

49

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://sqlalchemy.org/docs/core/exceptions.html#sqlalchemy.exc.DataError
http://sqlalchemy.org/docs/core/exceptions.html#sqlalchemy.exc.IntegrityError
http://sqlalchemy.org/docs/core/exceptions.html#sqlalchemy.exc.ProgrammingError

Sample request:

GET /api/eval/person?q={"functions": [{"name": "sum", "field": "age"}, {"name": "avg", "field": "height"}]} HTTP/1.1

The format of the response is

HTTP/1.1 200 OK

{"sum__age": 100, "avg_height": 68}

If no functions are specified in the request, the response will contain the empty JSON
object, {}.

Note: The functions whose names are given in the request will be evaluated using
SQLAlchemy’s func object.

Example

To get the total number of rows in the query (that is, the number of instances of the
requested model), use count as the name of the function to evaluate, and id for the
field on which to evaluate it:

Request:

GET /api/eval/person?q={"functions": [{"name": "count", "field": "id"}]} HTTP/1.1

Response:

HTTP/1.1 200 OK

{"count__id": 5}

6.4 JSONP callbacks

Add a callback=myfunc query parameter to the request URL on any GET requests
(including endpoints for function evaluation) to have the JSON data of the response
wrapped in the Javascript function myfunc. This can be used to circumvent some cross
domain scripting security issues. For example, a request like this:

GET /api/person/1?callback=foo HTTP/1.1

will produce a response like this:

HTTP/1.1 200 OK

foo({"meta": ..., "data": ...})

Then in your Javascript code, write the function foo like this:

50

http://docs.sqlalchemy.org/en/latest/core/expression_api.html#sqlalchemy.sql.expression.func
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3

function foo(response) {
var meta, data;
meta = response.meta;
data = response.data;
// Do something cool here...

}

The metadata includes the status code and the values of the HTTP headers, including
the Link headers parsed in JSON format. For example, a link that looks like this:

Link: <url1>; rel="next", <url2>; rel="foo"; bar="baz"

will look like this in the JSON metadata:

[
{"url": "url1", "rel": "next"},
{"url": "url2", "rel": "foo", "bar": "baz"}

]

The mimetype of a JSONP response is application/javascript instead of the usual
application/json, because the payload of such a response is not valid JSON.

6.5 Pagination

Responses to GET requests are paginated by default, with at most ten objects per page.
To request a specific page, add a page=N query parameter to the request URL, where N
is a positive integer (the first page is page one). If no page query parameter is specified,
the first page will be returned.

In order to specify the number of results per page, add the query parameter
results_per_page=N where N is a positive integer. If results_per_page is greater than
the maximum number of results per page as configured by the server (see Server-side
pagination), then the query parameter will be ignored.

In addition to the "objects" list, the response JSON object will have a "page" key
whose value is the current page, a "num_pages" key whose value is the total number
of pages into which the set of matching instances is divided, and a "num_results" key
whose value is the total number of instances which match the requested search. For
example, a request to GET /api/person?page=2 will result in the following response:

HTTP/1.1 200 OK

{
"num_results": 8,
"page": 2,
"num_pages": 3,
"objects": [{"id": 1, "name": "Jeffrey", "age": 24}, ...]

}

51

https://tools.ietf.org/html/rfc5988
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3

If pagination is disabled (by setting results_per_page=None in
APIManager.create_api(), for example), any page key in the query parameters
will be ignored, and the response JSON will include a "page" key which always has
the value 1.

Note: As specified in in Query format, clients can receive responses with limit (a
maximum number of objects in the response) and offset (the number of initial ob-
jects to skip in the response) applied. It is possible, though not recommended, to use
pagination in addition to limit and offset. For simple clients, pagination should be
fine.

52

Part II

API REFERENCE

53

54

CHAPTER 7

API

This part of the documentation documents all the public classes and functions in Flask-
Restless.

class flask.ext.restless.APIManager(app=None, **kw)
Provides a method for creating a public ReSTful JSON API with respect to a
given Flask application object.

The Flask object can be specified in the constructor, or after instantiation time
by calling the init_app() method. In any case, the application object must be
specified before calling the create_api() method.

app is the flask.Flask object containing the user’s Flask application.

session is the sqlalchemy.orm.session.Session object in which changes to the
database will be made.

flask_sqlalchemy_db is the flask.ext.sqlalchemy.SQLAlchemy object with which
app has been registered and which contains the database models for which API
endpoints will be created.

If flask_sqlalchemy_db is not None, session will be ignored.

For example, to use this class with models defined in pure SQLAlchemy:

from flask import Flask
from flask.ext.restless import APIManager
from sqlalchemy import create_engine
from sqlalchemy.orm.session import sessionmaker

engine = create_engine('sqlite:////tmp/mydb.sqlite')
Session = sessionmaker(bind=engine)
mysession = Session()
app = Flask(__name__)
apimanager = APIManager(app, session=mysession)

and with models defined with Flask-SQLAlchemy:

55

http://flask.pocoo.org/docs/api/#flask.Flask
http://flask.pocoo.org/docs/api/#flask.Flask
http://flask.pocoo.org/docs/api/#flask.Flask
http://sqlalchemy.org/docs/orm/session_api.html#sqlalchemy.orm.session.Session

from flask import Flask
from flask.ext.restless import APIManager
from flask.ext.sqlalchemy import SQLAlchemy

app = Flask(__name__)
db = SQLALchemy(app)
apimanager = APIManager(app, flask_sqlalchemy_db=db)

init_app(app, session=None, flask_sqlalchemy_db=None, preprocessors=None,
postprocessors=None)

Stores the specified flask.Flask application object on which API endpoints
will be registered and the sqlalchemy.orm.session.Session object in which
all database changes will be made.

session is the sqlalchemy.orm.session.Session object in which changes to
the database will be made.

flask_sqlalchemy_db is the flask.ext.sqlalchemy.SQLAlchemy object with
which app has been registered and which contains the database models for
which API endpoints will be created.

If flask_sqlalchemy_db is not None, session will be ignored.

This is for use in the situation in which this class must be instantiated before
the Flask application has been created.

To use this method with pure SQLAlchemy, for example:

from flask import Flask
from flask.ext.restless import APIManager
from sqlalchemy import create_engine
from sqlalchemy.orm.session import sessionmaker

apimanager = APIManager()

later...

engine = create_engine('sqlite:////tmp/mydb.sqlite')
Session = sessionmaker(bind=engine)
mysession = Session()
app = Flask(__name__)
apimanager.init_app(app, session=mysession)

and with models defined with Flask-SQLAlchemy:

from flask import Flask
from flask.ext.restless import APIManager
from flask.ext.sqlalchemy import SQLAlchemy

apimanager = APIManager()

later...

56

http://flask.pocoo.org/docs/api/#flask.Flask
http://sqlalchemy.org/docs/orm/session_api.html#sqlalchemy.orm.session.Session
http://sqlalchemy.org/docs/orm/session_api.html#sqlalchemy.orm.session.Session
http://flask.pocoo.org/docs/api/#flask.Flask

app = Flask(__name__)
db = SQLALchemy(app)
apimanager.init_app(app, flask_sqlalchemy_db=db)

postprocessors and preprocessors must be dictionaries as described in the sec-
tion Request preprocessors and postprocessors. These preprocessors and post-
processors will be applied to all requests to and responses from APIs created
using this APIManager object. The preprocessors and postprocessors given
in these keyword arguments will be prepended to the list of processors
given for each individual model when using the create_api_blueprint()
method (more specifically, the functions listed here will be executed before
any functions specified in the create_api_blueprint() method). For more
information on using preprocessors and postprocessors, see Request prepro-
cessors and postprocessors.

New in version 0.13.0: Added the preprocessors and postprocessors keyword
arguments.

create_api(*args, **kw)
Creates and registers a ReSTful API blueprint on the flask.Flask applica-
tion specified in the constructor of this class.

The positional and keyword arguments are passed directly to the
create_api_blueprint() method, so see the documentation there.

This is a convenience method for the following code:

blueprint = apimanager.create_api_blueprint(*args, **kw)
app.register_blueprint(blueprint)

Changed in version 0.6: The blueprint creation has been moved to
create_api_blueprint(); the registration remains here.

create_api_blueprint(model, app=None, methods=frozenset([’GET’]),
url_prefix=’/api’, collection_name=None, al-
low_patch_many=False, allow_delete_many=False,
allow_functions=False, exclude_columns=None,
include_columns=None, include_methods=None,
validation_exceptions=None, re-
sults_per_page=10, max_results_per_page=100,
post_form_preprocessor=None, preprocessors=None,
postprocessors=None, primary_key=None, serial-
izer=None, deserializer=None)

Creates and returns a ReSTful API interface as a blueprint, but does not
register it on any flask.Flask application.

The endpoints for the API for model will be available at
<url_prefix>/<collection_name>. If collection_name is None, the low-
ercase name of the provided model class will be used instead, as ac-
cessed by model.__tablename__. (If any black magic was performed on
model.__tablename__, this will be reflected in the endpoint URL.) For more
information, see Collection name.

57

http://flask.pocoo.org/docs/api/#flask.Flask
http://flask.pocoo.org/docs/api/#flask.Flask

This function must be called at most once for each model for which you
wish to create a ReSTful API. Its behavior (for now) is undefined if called
more than once.

This function returns the flask.Blueprint object which handles the end-
points for the model. The returned Blueprint has already been registered
with the Flask application object specified in the constructor of this class, so
you do not need to register it yourself.

model is the SQLAlchemy model class for which a ReSTful interface will be
created. Note this must be a class, not an instance of a class.

app is the Flask object on which we expect the blueprint created in this
method to be eventually registered. If not specified, the Flask application
specified in the constructor of this class is used.

methods specify the HTTP methods which will be made available on the
ReSTful API for the specified model, subject to the following caveats:

•If GET is in this list, the API will allow getting a single instance of the
model, getting all instances of the model, and searching the model us-
ing search parameters.

•If PATCH is in this list, the API will allow updating a single instance of
the model, updating all instances of the model, and updating a subset
of all instances of the model specified using search parameters.

•If DELETE is in this list, the API will allow deletion of a single instance
of the model per request.

•If POST is in this list, the API will allow posting a new instance of the
model per request.

The default set of methods provides a read-only interface (that is, only GET
requests are allowed).

collection_name is the name of the collection specified by the given model
class to be used in the URL for the ReSTful API created. If this is not speci-
fied, the lowercase name of the model will be used.

url_prefix the URL prefix at which this API will be accessible.

If allow_patch_many is True, then requests to /api/ will attempt to patch the
attributes on each of the instances of the model which match the specified
search query. This is False by default. For information on the search query
parameter q, see Making search queries.

If allow_delete_many is True, then requests to /api/ will attempt to delete
each instance of the model that matches the specified search query. This
is False by default. For information on the search query parameter q, see
Making search queries.

validation_exceptions is the tuple of possible exceptions raised by validation
of your database models. If this is specified, validation errors will be cap-

58

http://flask.pocoo.org/docs/api/#flask.Blueprint
http://flask.pocoo.org/docs/api/#flask.Blueprint
http://flask.pocoo.org/docs/api/#flask.Flask
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3
http://tools.ietf.org/html/rfc5789#section-2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.7
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3

tured and forwarded to the client in JSON format. For more information on
how to use validation, see Capturing validation errors.

If allow_functions is True, then requests to /api/eval/ will return the result
of evaluating SQL functions specified in the body of the request. For in-
formation on the request format, see Function evaluation. This if False by
default. Warning: you must not create an API for a model whose name is
’eval’ if you set this argument to True.

If either include_columns or exclude_columns is not None, exactly one of them
must be specified. If both are not None, then this function will raise a
IllegalArgumentError. exclude_columns must be an iterable of strings spec-
ifying the columns of model which will not be present in the JSON repre-
sentation of the model provided in response to GET requests. Similarly,
include_columns specifies the only columns which will be present in the re-
turned dictionary. In other words, exclude_columns is a blacklist and in-
clude_columns is a whitelist; you can only use one of them per API endpoint.
If either include_columns or exclude_columns contains a string which does not
name a column in model, it will be ignored.

If you attempt to either exclude a primary key field or not include
a primary key field for POST requests, this method will raise an
IllegalArgumentError.

If include_columns is an iterable of length zero (like the empty tuple or the
empty list), then the returned dictionary will be empty. If include_columns is
None, then the returned dictionary will include all columns not excluded by
exclude_columns.

If include_methods is an iterable of strings, the methods with names corre-
sponding to those in this list will be called and their output included in the
response.

See Specifying which columns are provided in responses for information on spec-
ifying included or excluded columns on fields of related models.

results_per_page is a positive integer which represents the default num-
ber of results which are returned per page. Requests made by clients
may override this default by specifying results_per_page as a query argu-
ment. max_results_per_page is a positive integer which represents the max-
imum number of results which are returned per page. This is a “hard”
upper bound in the sense that even if a client specifies that greater than
max_results_per_page should be returned, only max_results_per_page results
will be returned. For more information, see Server-side pagination.

Deprecated since version 0.9.2: The post_form_preprocessor keyword argu-
ment is deprecated in version 0.9.2. It will be removed in version 1.0. Re-
place code that looks like this::

manager.create_api(Person, post_form_preprocessor=foo)

with code that looks like this:

59

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5

manager.create_api(Person, preprocessors=dict(POST=[foo]))

See Request preprocessors and postprocessors for more information and exam-
ples.

post_form_preprocessor is a callback function which takes POST input param-
eters loaded from JSON and enhances them with other key/value pairs. The
example use of this is when your model requires to store user identity and
for security reasons the identity is not read from the post parameters (where
malicious user can tamper with them) but from the session.

preprocessors is a dictionary mapping strings to lists of functions. Each key
is the name of an HTTP method (for example, ’GET’ or ’POST’). Each value
is a list of functions, each of which will be called before any other code
is executed when this API receives the corresponding HTTP request. The
functions will be called in the order given here. The postprocessors keyword
argument is essentially the same, except the given functions are called after
all other code. For more information on preprocessors and postprocessors,
see Request preprocessors and postprocessors.

primary_key is a string specifying the name of the column of model to use as
the primary key for the purposes of creating URLs. If the model has exactly
one primary key, there is no need to provide a value for this. If model has
two or more primary keys, you must specify which one to use.

serializer and deserializer are custom serialization functions. The former func-
tion must take a single argument representing the instance of the model to
serialize, and must return a dictionary representation of that instance. The
latter function must take a single argument representing the dictionary rep-
resentation of an instance of the model and must return an instance of model
that has those attributes. For more information, see Custom serialization.

New in version 0.17.0: Added the serializer and deserializer keyword argu-
ments.

New in version 0.16.0: Added the app and allow_delete_many keyword argu-
ments.

New in version 0.13.0: Added the primary_key keyword argument.

New in version 0.10.2: Added the include_methods keyword argument.

Changed in version 0.10.0: Removed authentication_required_for and authen-
tication_function keyword arguments.

Use the preprocesors and postprocessors keyword arguments instead. For
more information, see Requiring authentication for some methods.

New in version 0.9.2: Added the preprocessors and postprocessors keyword
arguments.

New in version 0.9.0: Added the max_results_per_page keyword argument.

New in version 0.7: Added the exclude_columns keyword argument.

60

New in version 0.6: This functionality was formerly in create_api(), but
the blueprint creation and registration have now been separated.

New in version 0.6: Added the results_per_page keyword argument.

New in version 0.5: Added the include_columns and validation_exceptions
keyword argument.

New in version 0.4: Added the allow_functions, allow_patch_many, authenti-
cation_required_for, authentication_function, and collection_name keyword ar-
guments.

New in version 0.4: Force the model name in the URL to lowercase.

flask.ext.restless.url_for(model, instid=None, relationname=None, relationin-
stid=None, _apimanager=None, **kw)

Returns the URL for the specified model, similar to flask.url_for().

model is a SQLAlchemy model class. This should be a model on which
APIManager.create_api_blueprint() (or APIManager.create_api()) has been
invoked previously. If no API has been created for it, this function raises a Val-
ueError.

If _apimanager is not None, it must be an instance of APIManager. Restrict our
search for endpoints exposing model to only endpoints created by the specified
APIManager instance.

instid, relationname, and relationinstid allow you to get a more specific sub-
resource.

For example, suppose you have a model class Person and have created the ap-
propriate Flask application and SQLAlchemy session:

>>> manager = APIManager(app, session=session)
>>> manager.create_api(Person, collection_name='people')
>>> url_for(Person, instid=3)
'http://example.com/api/people/3'
>>> url_for(Person, instid=3, relationname=computers)
'http://example.com/api/people/3/computers'
>>> url_for(Person, instid=3, relationname=computers, relationinstid=9)
'http://example.com/api/people/3/computers/9'

The remaining keyword arguments, kw, are passed directly on to
flask.url_for().

class flask.ext.restless.ProcessingException(description=’‘, code=400, *args,
**kwargs)

Raised when a preprocessor or postprocessor encounters a problem.

This exception should be raised by functions supplied in the preprocessors and
postprocessors keyword arguments to APIManager.create_api. When this ex-
ception is raised, all preprocessing or postprocessing halts, so any processors
appearing later in the list will not be invoked.

code is the HTTP status code of the response supplied to the client in the case that

61

http://flask.pocoo.org/docs/api/#flask.url_for
http://flask.pocoo.org/docs/api/#flask.url_for

this exception is raised. description is an error message describing the cause of
this exception. This message will appear in the JSON object in the body of the
response to the client.

62

Part III

ADDITIONAL INFORMATION

63

64

CHAPTER 8

Similar projects

If Flask-Restless doesn’t work for you, here are some similar Python packages that in-
tend to simplify the creation of ReSTful APIs (in various combinations of Web frame-
works and database backends):

• Eve

• Flask-Peewee

• Flask-RESTful

• simpleapi

• Tastypie

• Django REST framework

• Restless

65

http://python-eve.org
https://flask-peewee.readthedocs.org
https://flask-restful.readthedocs.org
https://simpleapi.readthedocs.org
https://django-tastypie.readthedocs.org
http://www.django-rest-framework.org
https://restless.readthedocs.org

66

CHAPTER 9

Copyright and license

Flask-Restless is copyright 2011 Lincoln de Sousa and copyright 2012, 2013, 2014, 2015
Jeffrey Finkelstein, and is dual-licensed under the following two copyright licenses:

• the GNU Affero General Public License, either version 3 or (at your option) any
later version

• the 3-clause BSD License

For more information, see the files LICENSE.AGPL and LICENSE.BSD in top-level direc-
tory of the source distribution.

The artwork for Flask-Restless is copyright 2012 Jeffrey Finkelstein. The couch logo is
licensed under the Creative Commons Attribute-ShareAlike 3.0 license. The original
image is a scan of a (now public domain) illustration by Arthur Hopkins in a serial
edition of “The Return of the Native” by Thomas Hardy published in October 1878.
The couch logo with the “Flask-Restless” text is licensed under the Flask Artwork
License.

The documentation is licensed under the Creative Commons Attribute-ShareAlike 3.0
license.

67

http://fsf.org/licenses/agpl.html
http://creativecommons.org/licenses/by-sa/3.0
http://flask.pocoo.org/docs/license/#flask-artwork-license
http://flask.pocoo.org/docs/license/#flask-artwork-license
http://creativecommons.org/licenses/by-sa/3.0
http://creativecommons.org/licenses/by-sa/3.0

68

CHAPTER 10

Changelog

Here you can see the full list of changes between each Flask-Restless release. Numbers
following a pound sign (#) refer to GitHub issues.

Note: As of version 0.13.0, Flask-Restless supports Python 2.6, 2.7, and 3. Before that,
it supported Python 2.5, 2.6, and 2.7.

Note: As of version 0.6, Flask-Restless supports both pure SQLAlchemy and Flask-
SQLAlchemy models. Before that, it supported only Elixir models.

10.1 Version 0.17.0

Released on February 17, 2015.

• Corrects bug to allow delayed initialization of multiple Flask applications.

• #167: allows custom serialization/deserialization functions.

• #198: allows arbitrary Boolean expressions in search query filters.

• #226: allows creating APIs before initializing the Flask application object.

• #274: adds the url_for() function for computing URLs from models.

• #379: improves datetime parsing in search requests.

• #398: fixes bug where DELETE_SINGLE processors were not actually used.

• #400: disallows excluding a primary key on a POST request.

69

https://github.com/jfinkels/flask-restless/issues
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5

10.2 Version 0.16.0

Released on February 3, 2015.

• #237: allows bulk delete of model instances via the allow_delete_many keyword
argument.

• #313, #389: APIManager.init_app() now can be correctly used to initialize mul-
tiple Flask applications.

• #327, #391: allows ordering searches by fields on related instances.

• #353: allows search queries to specify group_by directives.

• #365: allows preprocessors to specify return values on GET requests.

• #385: makes the include_methods keywords argument respect model properties.

10.3 Version 0.15.1

Released on January 2, 2015.

• #367: catch IntegrityError, DataError, and ProgrammingError exceptions in all
view methods.

• #374: import sqlalchemy.Column from sqlalchemy directly, instead of
sqlalchemy.sql.schema

10.4 Version 0.15.0

Released on October 30, 2014.

• #320: detect settable hybrid properties instead of raising an exception.

• #350: allows exclude/include columns to be specified as SQLAlchemy column
objects in addition to strings.

• #356: rollback the SQLAlchemy session on a failed PATCH request.

• #368: adds missing documentation on using custom queries (see Custom queries)

10.5 Version 0.14.2

Released on September 2, 2014.

• #351, #355: fixes bug in getting related models from a model with hybrid prop-
erties.

70

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3
http://tools.ietf.org/html/rfc5789#section-2

10.6 Version 0.14.1

Released on August 26, 2014.

• #210: lists some related projects in the documentation.

• #347: adds automated build testing for PyPy 3.

• #354: renames is_deleted to was_deleted when providing keyword arguments
to postprocessor for DELETE method in order to match documentation.

10.7 Version 0.14.0

Released on August 12, 2014.

• Fixes bug where primary key specified by user was not being checked in some
POST requests and some search queries.

• #223: documents CORS example.

• #280: don’t expose raw SQL in responses on database errors.

• #299: show error message if search query tests for NULL using comparison opera-
tors.

• #315: check for query object being None.

• #324: DELETE should only return 204 No Content if something is actuall deleted.

• #325: support null inside has search operators.

• #328: enable automatic testing for Python 3.4.

• #333: enforce limit in helpers.count().

• #338: catch validation exceptions when attempting to update relations.

• #339: use user-specified primary key on PATCH requests.

• #344: correctly encodes Unicode fields in responses.

10.8 Version 0.13.1

Released on April 21, 2014.

• #304: fixes mimerender bug due to how Python 3.4 handles decorators.

10.9 Version 0.13.0

Released on April 6, 2014.

71

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.7
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.7
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://tools.ietf.org/html/rfc5789#section-2

• Allows universal preprocessors or postprocessors; see Universal preprocessors and
postprocessors.

• Allows specifying which primary key to use when creating endpoint URLs.

• Requires SQLAlchemy version 0.8 or greater.

• #17: use Flask’s flask.Request.json to parse incoming JSON requests.

• #29: replace custom jsonify_status_code function with built-in support for
return jsonify(), status_code style return statements (new in Flask 0.9).

• #51: Use mimerender to render dictionaries to JSON format.

• #247: adds support for making POST requests to dictionary-like association
proxies.

• #249: returns 404 Not Found if a search reveals no matching results.

• #254: returns 404 Not Found if no related field exists for a request with a related
field in the URL.

• #256: makes search parameters available to postprocessors for GET and PATCH
requests that access multiple resources.

• #263: Adds Python 3.3 support; drops Python 2.5 support.

• #267: Adds compatibility for legacy Microsoft Internet Explorer versions 8 and
9.

• #270: allows the query attribute on models to be a callable.

• #282: order responses by primary key if no order is specified.

• #284: catch DataError and ProgrammingError exceptions when bad data are sent
to the server.

• #286: speed up paginated responses by using optimized count() function.

• #293: allows sqlalchemy.Time fields in JSON responses.

10.10 Version 0.12.1

Released on December 1, 2013.

• #222: on POST and PATCH requests, recurse into nested relations to get or create
instances of related models.

• #246: adds pysqlite to test requirements.

• #260: return a single object when making a GET request to a relation sub-URL.

• #264: all methods now execute postprocessors after setting headers.

• #265: convert strings to dates in related models when making POST requests.

72

http://flask.pocoo.org/docs/api/#flask.Request.json
http://mimerender.readthedocs.org
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3
http://tools.ietf.org/html/rfc5789#section-2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5
http://tools.ietf.org/html/rfc5789#section-2
https://pypi.python.org/pypi/pysqlite
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5

10.11 Version 0.12.0

Released on August 8, 2013.

• #188: provides metadata as well as normal data in JSONP responses.

• #193: allows DELETE requests to related instances.

• #215: removes Python 2.5 tests from Travis configuration.

• #216: don’t resolve Query objects until pagination function.

• #217: adds missing indices in format string.

• #220: fix bug when checking attributes on a hybrid property.

• #227: allows client to request that the server use the current date and/or time
when setting the value of a field.

• #228 (as well as #212, #218, #231): fixes issue due to a module removed from
Flask version 0.10.

10.12 Version 0.11.0

Released on May 18, 2013.

• Requests that require a body but don’t have Content-Type: application/json
will cause a 415 Unsupported Media Type response.

• Responses now have Content-Type: application/json.

• #180: allow more expressive has and any searches.

• #195: convert UUID objects to strings when converting an instance of a model to
a dictionary.

• #202: allow setting hybrid properties with expressions and setters.

• #203: adds the include_methods keyword argument to
APIManager.create_api(), which allows JSON responses to include the re-
sult of calling arbitrary methods of instances of models.

• #204, 205: allow parameters in Content-Type header.

10.13 Version 0.10.1

Released on May 8, 2013.

• #115: change assertEqual() methods to assert statements in tests.

• #184, #186: Switch to nose for testing.

73

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.7
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.16
http://nose.readthedocs.org

• #197: documents technique for adding filters in processors when there are none
initially.

10.14 Version 0.10.0

Released on April 30, 2013.

• #2: adds basic GET access to one level of relationship depth for models.

• #113: interpret empty strings for date fields as None objects.

• #115: use Python’s built-in assert statements for testing

• #128: allow disjunctions when filtering search queries.

• #130: documentation and examples now more clearly show search examples.

• #135: added support for hybrid properties.

• #139: remove custom code for authentication in favor of user-defined pre- and
postprocessors (this supercedes the fix from #154).

• #141: relax requirement for version of python-dateutil to be not equal to 2.0 if
using Python version 2.6 or 2.7.

• #146: preprocessors now really execute before other code.

• #148: adds support for SQLAlchemy association proxies.

• #154 (this fix is irrelevant due to #139): authentication function now may raise an
exception instead of just returning a Boolean.

• #157: POST requests now receive a response containing all fields of the created
instance.

• #162: allow pre- and postprocessors to indicate that no change has occurred.

• #164, #172, and #173: PATCH requests update fields on related instances.

• #165: fixed bug in automatic exposing of URLs for related instances.

• #170: respond with correct HTTP status codes when a query for a single instance
results in none or multiple instances.

• #174: allow dynamically loaded relationships for automatically exposed URLs
of related instances.

• #176: get model attribute instead of column name when getting name of primary
key.

• #182: allow POST requests that set hybrid properties.

• #152: adds some basic server-side logging for exceptions raised by views.

74

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3
http://labix.org/python-dateutil
http://docs.sqlalchemy.org/en/latest/orm/extensions/associationproxy.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5
http://tools.ietf.org/html/rfc5789#section-2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5

10.15 Version 0.9.3

Released on February 4, 2013.

• Fixes incompatibility with Python 2.5 try/except syntax.

• #116: handle requests which raise IntegrityError.

10.16 Version 0.9.2

Released on February 4, 2013.

• #82, #134, #136: added request pre- and postprocessors.

• #120: adds support for JSON-P callbacks in GET requests.

10.17 Version 0.9.1

Released on January 17, 2013.

• #126: fix documentation build failure due to bug in a dependency.

• #127: added “ilike” query operator.

10.18 Version 0.9.0

Released on January 16, 2013.

• Removed ability to provide a Session class when initializing APIManager; pro-
vide an instance of the class instead.

• Changes some dynamically loaded relationships used for testing and in ex-
amples to be many-to-one instead of the incorrect one-to-many. Versions of
SQLAlchemy after 0.8.0b2 raise an exception when the latter is used.

• #105: added ability to set a list of related model instances on a model.

• #107: server responds with an error code when a PATCH or POST request speci-
fies a field which does not exist on the model.

• #108: dynamically loaded relationships should now be rendered correctly by the
views._to_dict() function regardless of whether they are a list or a single object.

• #109: use sphinxcontrib-issuetracker to render links to GitHub issues in docu-
mentation.

• #110: enable results_per_page query parameter for clients, and added
max_results_per_page keyword argument to APIManager.create_api().

75

http://sqlalchemy.org/docs/core/exceptions.html#sqlalchemy.exc.IntegrityError
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3
http://sqlalchemy.org/docs/orm/session_api.html#sqlalchemy.orm.session.Session
http://tools.ietf.org/html/rfc5789#section-2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5
https://sphinxcontrib-issuetracker.readthedocs.org/en/latest

• #114: fix bug where string representations of integers were converted to integers.

• #117: allow adding related instances on PATCH requests for one-to-one relation-
ships.

• #123: PATCH requests to instances which do not exist result in a 404 Not Found
response.

10.19 Version 0.8.0

Released on November 19, 2012.

• #94: views._to_dict() should return a single object instead of a list when resolv-
ing dynamically loaded many-to-one relationships.

• #104: added num_results key to paginated JSON responses.

10.20 Version 0.7.0

Released on October 9, 2012.

• Added working include and exclude functionality to the views._to_dict()
function.

• Added exclude_columns keyword argument to APIManager.create_api().

• #79: attempted to access attribute of None in constructor of APIManager.

• #83: allow POST requests with one-to-one related instances.

• #86: allow specifying include and exclude for related models.

• #91: correctly handle POST requests to nullable DateTime columns.

• #93: Added a total_pages mapping to the JSON response.

• #98: GET requests to the function evaluation endpoint should not have a data
payload.

• #101: exclude in views._to_dict() function now correctly excludes requested
fields from the returned dictionary.

10.21 Version 0.6

Released on June 20, 2012.

• Added support for accessing model instances via arbitrary primary keys, instead
of requiring an integer column named id.

• Added example which uses curl as a client.

76

http://tools.ietf.org/html/rfc5789#section-2
http://tools.ietf.org/html/rfc5789#section-2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3

• Added support for pagination of responses.

• Fixed issue due to symbolic link from README to README.md when running pip
bundle foobar Flask-Restless.

• Separated API blueprint creation from registration, using
APIManager.create_api() and APIManager.create_api_blueprint().

• Added support for pure SQLAlchemy in addition to Flask-SQLAlchemy.

• #74: Added post_form_preprocessor keyword argument to
APIManager.create_api().

• #77: validation errors are now correctly handled on PATCH requests.

10.22 Version 0.5

Released on April 10, 2012.

• Dual-licensed under GNU AGPLv3+ and 3-clause BSD license.

• Added capturing of exceptions raised during field validation.

• Added examples/separate_endpoints.py, showing how to create separate API
endpoints for a single model.

• Added include_columns keyword argument to create_api() method to allow
users to specify which columns of the model are exposed in the API.

• Replaced Elixir with Flask-SQLAlchemy. Flask-Restless now only supports
Flask-SQLAlchemy.

10.23 Version 0.4

Released on March 29, 2012.

• Added Python 2.5 and Python 2.6 support.

• Allow users to specify which HTTP methods for a particular API will require
authentication and how that authentication will take place.

• Created base classes for test cases.

• Moved the evaluate_functions function out of the flask_restless.search
module and corrected documentation about how function evaluation works.

• Added allow_functions keyword argument to create_api().

• Fixed bug where we weren’t allowing PUT requests in create_api().

• Added collection_name keyword argument to create_api() to allow user pro-
vided names in URLs.

77

http://tools.ietf.org/html/rfc5789#section-2

• Added allow_patch_many keyword argument to create_api() to allow enabling
or disabling the PATCH many functionality.

• Disable the PATCH many functionality by default.

10.24 Version 0.3

Released on March 4, 2012.

• Initial release in Flask extension format.

78

Index

A
APIManager (class in flask.ext.restless), 55

C
create_api() (flask.ext.restless.APIManager

method), 57
create_api_blueprint()

(flask.ext.restless.APIManager
method), 57

F
flask.ext.restless (module), 55

I
init_app() (flask.ext.restless.APIManager

method), 56

P
ProcessingException (class in

flask.ext.restless), 61

U
url_for() (in module flask.ext.restless), 61

79

	I User's guide
	Downloading and installing Flask-Restless
	Quickstart
	Creating API endpoints
	Initializing the Flask application after creating the API manager

	Customizing the ReSTful interface
	HTTP methods
	API prefix
	Collection name
	Specifying one of many primary keys
	Enable bulk patching or deleting
	Custom serialization
	Capturing validation errors
	Exposing evaluation of SQL functions
	Specifying which columns are provided in responses
	Server-side pagination
	Request preprocessors and postprocessors
	Custom queries

	Making search queries
	Quick examples
	Query format
	Operators
	Examples

	Format of requests and responses
	Date and time fields
	Errors and error messages
	Function evaluation
	JSONP callbacks
	Pagination

	II API reference
	API

	III Additional information
	Similar projects
	Copyright and license
	Changelog
	Version 0.17.0
	Version 0.16.0
	Version 0.15.1
	Version 0.15.0
	Version 0.14.2
	Version 0.14.1
	Version 0.14.0
	Version 0.13.1
	Version 0.13.0
	Version 0.12.1
	Version 0.12.0
	Version 0.11.0
	Version 0.10.1
	Version 0.10.0
	Version 0.9.3
	Version 0.9.2
	Version 0.9.1
	Version 0.9.0
	Version 0.8.0
	Version 0.7.0
	Version 0.6
	Version 0.5
	Version 0.4
	Version 0.3

