

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	Flask-Restless 0.4 documentation

Flask-Restless

Flask-Restless provides simple generation of ReSTful APIs for database
models given as Elixir entities. The generated APIs send and receive messages
in JSON format.

User’s guide

Documentation on how to use the Flask-Restless extension to create ReSTful JSON
APIs for your database models.

	Downloading and installing Flask-Restless

	Quickstart

	Creating API endpoints

	Customizing the ReSTful interface
	HTTP methods

	API prefix

	Collection name

	Enabling patching the result of a search

	Exposing evaluation of SQL function

	Requiring authentication for some methods

	Making search queries
	Query format

	Operators

	Examples

	Format of requests and responses
	Error messages

	Function evaluation

	Validation

API reference

	API

Additional information

	Copyright and license

	Changelog
	Version 0.4

	Version 0.3

 Copyright 2012 Jeffrey Finkelstein.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.9.3

 	0.9.2

 	0.9.1

 	0.9.0

 	0.8.0

 	0.7.0

 	0.6

 	0.5

 	0.4

 	0.3

 Downloading and installing Flask-Restless

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Flask-Restless 0.4 documentation

Downloading and installing Flask-Restless

Flask-Restless can be downloaded from its page on the Python Package Index [http://pypi.python.org/pypi/Flask-Restless]. The development version can be
downloaded from its page at GitHub [http://github.com/jfinkels/flask-restless]. However, it is better to install
with pip (hopefully in a virtual environment provided by virtualenv):

pip install Flask-Restless

Flask-Restless has the following dependencies (which will be automatically
installed if you use pip):

	Flask [http://flask.pocoo.org] version 0.7 or greater

	Elixir [http://elixir.ematia.de]

	SQLAlchemy [http://sqlalchemy.org]

	python-dateutil [http://labix.org/python-dateutil] version less than 2.0

Flask-Restless requires Python version 2.5, 2.6 or 2.7. Python 3 support will
come when Flask has it.

 Copyright 2012 Jeffrey Finkelstein.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.9.3

 	0.9.2

 	0.9.1

 	0.9.0

 	0.8.0

 	0.7.0

 	0.6

 	0.5

 	0.4

 	0.3

 Quickstart

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Flask-Restless 0.4 documentation

Quickstart

For the restless:

import flask.ext.restless
from elixir import Date, DateTime, Field, Unicode
from elixir import ManyToOne, OneToMany
from elixir import create_all, metadata, setup_all
from sqlalchemy import create_engine

Entity classes must inherit from flaskext.restless.Entity. Other than
that, the definition of the model is exactly the same.
class Person(flask.ext.restless.Entity):
 name = Field(Unicode, unique=True)
 birth_date = Field(Date)
 computers = OneToMany('Computer')

class Computer(flask.ext.restless.Entity):
 name = Field(Unicode, unique=True)
 vendor = Field(Unicode)
 owner = ManyToOne('Person')
 purchase_time = Field(DateTime)

Basic Elixir setup is the same.
metadata.bind = create_engine('sqlite:////tmp/test.db')
metadata.bind.echo = False
setup_all()
create_all()

Create the Flask application and register it with the APIManager.
app = flask.Flask(__name__)
manager = flask.ext.restless.APIManager(app)

Create API endpoints, which will be available at /api/<modelname> by
default (with the lowercase form of the model name). Allowed HTTP methods
can be specified as well.
manager.create_api(Person, methods=['GET', 'PATCH', 'POST', 'DELETE'])
manager.create_api(Computer, methods=['GET'])

start the flask loop
app.run()

 Copyright 2012 Jeffrey Finkelstein.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.9.3

 	0.9.2

 	0.9.1

 	0.9.0

 	0.8.0

 	0.7.0

 	0.6

 	0.5

 	0.4

 	0.3

 Creating API endpoints

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Flask-Restless 0.4 documentation

Creating API endpoints

To use this extension, you must have defined your database models using
elixir.Entity as a base class.

First, change your model classes to inherit from
flask.ext.restless.Entity instead of elixir.Entity:

#from elixir import Entity
from flask.ext.restless import Entity
from elixir import Date, DateTime, Field, Unicode
from elixir import ManyToOne, OneToMany

class Person(Entity):
 name = Field(Unicode, unique=True)
 birth_date = Field(Date)
 computers = OneToMany('Computer')

class Computer(Entity):
 name = Field(Unicode, unique=True)
 vendor = Field(Unicode)
 owner = ManyToOne('Person')
 purchase_time = Field(DateTime)

Warning

Attributes of these entities must not have a name containing two
underscores. For example, this class definition is no good:

class Person(Entity):
 __mysecretfield = Field(Unicode)

This restriction is necessary because the search feature (see
Making search queries) uses double underscores as a separator. This may change
in the future.

Second, create your flask.Flask [http://flask.pocoo.org/docs/api/#flask.Flask] object and instantiate a
flask.ext.restless.APIManager object with that Flask [http://flask.pocoo.org/docs/api/#flask.Flask]:

from flask import Flask
from flask.ext.restless import APIManager

app = Flask(__name__)
manager = APIManager(app)

Third, create the API endpoints which will be accessible to web clients:

person_blueprint = manager.create_api(Person, methods=['GET', 'PATCH',
 'POST', 'DELETE'])
computer_blueprint = manager.create_api(Computer, method=['GET'])

Due to the design of Flask, these APIs must be created before your application
handles any requests. The return value of APIManager.create_api() is the
blueprint in which the endpoints for the specified database model live. The
blueprint has already been registered on the Flask [http://flask.pocoo.org/docs/api/#flask.Flask] application,
so you do not need to register it yourself. It is provided so that you can
examine its attributes, but if you don’t need it then just ignore it:

manager.create_api(Person, methods=['GET', 'PATCH', 'POST', 'DELETE'])
manager.create_api(Computer, methods=['GET'])

By default, the API for Person, in the above code samples, will be
accessible at http://<host>:<port>/api/person (note the lowercase name of the model in the URL):

>>> import json
>>> import requests # python-requests is installable from PyPI...
>>> newperson = {'name': u'Lincoln', 'age': 23}
>>> r = requests.post('/api/person', data=json.dumps(newperson))
>>> r.status_code, r.headers['content-type'], r.data
(201, 'application/json', '{"id": 1}')
>>> newid = json.loads(response.data)['id']
>>> r = requests.get('/api/person/{}'.format(newid))
>>> r.status_code, r.headers['content-type']
(200, 'application/json')
>>> r.data
{
 "other": null,
 "name": "Lincoln",
 "birth_date": null,
 "age": 23.0,
 "computers": [],
 "id": 1
}

 Copyright 2012 Jeffrey Finkelstein.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.9.3

 	0.9.2

 	0.9.1

 	0.9.0

 	0.8.0

 	0.7.0

 	0.6

 	0.5

 	0.4

 	0.3

 Customizing the ReSTful interface

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Flask-Restless 0.4 documentation

Customizing the ReSTful interface

HTTP methods

By default, the APIManager.create_api() method creates a read-only
interface; requests with HTTP methods other than GET [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3] will cause
a response with 405 Method Not Allowed [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.6]. To explicitly specify which methods
should be allowed for the endpoint, pass a list as the value of keyword
argument methods:

apimanager.create_api(Person, methods=['GET', 'POST', 'DELETE'])

This creates an endpoint at /api/person which responds to
GET [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3], POST [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5], and DELETE [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.7] methods, but
not to other ones like PUT [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.6] or PATCH [http://tools.ietf.org/html/rfc5789#section-2].

The recognized HTTP methods and their semantics are described below (assuming
you have created an API for an entity Person). All endpoints which respond
with data respond with serialized JSON strings.

	
GET /api/person

	Returns a list of all Person instances.

	
GET /api/person/(int: id)

	Returns a single Person instance with the given id.

	
GET /api/person?q=<searchjson>

	Returns a list of all Person instances which match the search query
specified in the query parameter q. For more information on searching,
see Making search queries.

	
DELETE /api/person/(int: id)

	Deletes the person with the given id and returns 204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5].

	
POST /api/person

	Creates a new person in the database and returns its id. The initial
attributes of the Person are read as JSON from the body of the
request. For information about the format of this request, see
Format of requests and responses.

	
PATCH /api/person/(int: id)

	Updates the attributes of the Person with the given id. The
attributes are read as JSON from the body of the request. For information
about the format of this request, see Format of requests and responses.

	
PATCH /api/person?q=<searchjson>

	This is only available if the allow_patch_many keyword argument is set
to True when calling the create_api() method. For more
information, see Enabling patching the result of a search.

Updates the attributes of all Person instances which match the search
query specified in the query parameter q. The attributes are read as
JSON from the body of the request. For information about searching, see
Search Page. For information about the format of this request, see
Format of requests and responses.

	
PUT /api/person?q=<searchjson>

	

	
PUT /api/person/(int: id)

	Aliases for PATCH /api/person.

API prefix

To create an API at a different prefix, use the url_prefix keyword
argument:

apimanager.create_api(Person, url_prefix='/api/v2')

Then your API for Person will be available at /api/v2/person.

Collection name

By default, the name of the collection in the API will be the lowercase name of
the model. To provide a different name for the model, provide a string to the
collection_name keyword argument of the APIManager.create_api()
method:

apimanager.create_api(Person, collection_name='people')

Then the API will be exposed at /api/people instead of /api/person.

Enabling patching the result of a search

By default, a PATCH /api/people request (with or without a q query
parameter) will cause a 405 Method Not Allowed [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.6] response. By setting the
allow_patch_many keyword argument of the APIManager.create_api()
method to be True, PATCH /api/person requests will patch the
provided attributes on all of the instances of Person which match the
provided search query (or all instances if no query parameter is provided):

apimanager.create_api(Person, allow_patch_many=True)

Exposing evaluation of SQL function

If the allow_functions keyword argument is set to True when creating an
API for a model using APIManager.create_api(), then an endpoint will be
made available for GET /api/eval/person which responds to requests for
evaluation of functions on all instances the model.

For information about the request and response formats for this endpoint, see
Function evaluation.

Requiring authentication for some methods

Note

The authentication system in Flask-Restless is relatively simple, but since
I suspect it is a common requirement for ReSTful APIs, suggestions,
comments, and pull requests are much appreciated. Please visit our issue
tracker [https://github.com/jfinkels/flask-restless/issues].

If you want certain HTTP methods to require authentication, use the
authentication_required_for and authentication_function keyword
arguments to the APIManager.create_api() method. If you specify the
former, you must also specify the latter.

authentication_required_for is the list of HTTP method names which will
require authentication and authentication_function is a function with zero
arguments which returns True if and only if the client making the request
has been authenticated. This function can really be anything you like, but
presumably it will have something to do with your authentication framework.

For an example using Flask-Login, see the
examples/authentication directory in the source distribution, or view
it online at GitHub [https://github.com/jfinkels/flask-restless/tree/master/examples/authentication].

 Copyright 2012 Jeffrey Finkelstein.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.9.3

 	0.9.2

 	0.9.1

 	0.9.0

 	0.8.0

 	0.7.0

 	0.6

 	0.5

 	0.4

 	0.3

 Making search queries

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Flask-Restless 0.4 documentation

Making search queries

Clients can make GET [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3] requests on individual instances of a model
(for example, GET /api/person/1) and on collections of all instances of
a model (GET /api/person). To get all instances of a model which meet
some criteria, clients can make GET [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3] requests with a query
parameter specifying a search. The search functionality in Flask-Restless is
relatively simple, but should suffice for many cases.

If the allow_patch_many keyword argument is set to True when calling
the APIManager.create_api() function, then PATCH [http://tools.ietf.org/html/rfc5789#section-2] requests
will accept search queries as well. In this case, every instance of the model
which meets the criteria of the search will be patched. For more information,
see Enabling patching the result of a search.

Query format

The query parameter q must be a JSON string. It can have the following
mappings, all of which are optional:

	filters

	A list of objects of one of the following forms:

{"name": <fieldname>, "op": <operatorname>, "val": <argument>}

or:

{"name": <fieldname>, "op": <operatorname>, "field": <fieldname>}

In the first form, <operatorname> is one of the strings described in the
Operators section, the first <fieldname> is the name of the field
of the model to which to apply the operator, <argument> is a value to be
used as the second argument to the given operator. In the second form, the
second <fieldname> is the field of the model which should be used as the
second argument to the operator.

<fieldname> may alternately specify a field on a related model, if it is
a string of the form <relationname>__<fieldname>.

The returned list of matching instances will include only those instances
which satisfy all of the given filters.

	limit

	A positive integer which specified the maximum number of objects to return.

	offset

	A positive integer which specifies the offset into the result set of the
returned list of instances.

	order_by

	A list of objects of the form:

{"field": <fieldname>, "direction": <directionname>}

where <fieldname> is a string corresponding to the name of a field of the
requested model and <directionname> is either "asc" for ascending
order or "desc" for descending order.

	single

	A boolean representing whether a single result is expected as a result of the
search. If this is true and either no results or multiple results meet
the criteria of the search, the server responds with an error message.

Operators

The operator strings recognized by the API incude:

	==, eq, equals, equals_to

	!=, neq, does_not_equal, not_equal_to

	>, gt, <, lt

	>=, ge, gte, geq, <=, le, lte, leq

	in, not_in

	is_null, is_not_null

	like

	has

	any

These correspond to SQLAlchemy column operators as defined here [http://docs.sqlalchemy.org/en/latest/core/expression_api.html#sqlalchemy.sql.operators.ColumnOperators].

Examples

Consider a Person model available at the URL /api/person, and suppose
all of the following requests are GET /api/person requests with query
parameter q.

Attribute greater than a value

If query parameter q has the value

{"filters": [{"name": "age", "op": "ge", "val": 10}]}

(represented as a string), then the response will include only those Person
instances which have age attribute greater than or equal to 10.

HTTP/1.1 200 OK

{ "objects":
 [
 {"id": 1, "name": "Jeffrey", "age": 24},
 {"id": 2, "name": "John", "age": 13},
 {"id": 3, "name": "Mary", "age": 18}
]
}

Attribute between two values

If query parameter q has the value

{ "filters":
 [
 {"name": "age", "op": "ge", "val": 10},
 {"name": "age", "op": "le", "val": 20}
]
}

(represented as a string), then the response will include only those
Person instances which have age attribute between 10 and 20,
inclusive.

HTTP/1.1 200 OK

{ "objects":
 [
 {"id": 2, "name": "John", "age": 13},
 {"id": 3, "name": "Mary", "age": 18}
]
}

Expecting a single result

If query parameter q has the value

{
 "single": true,
 "filters":
 [
 {"name": "id", "op": "eq", "val": 1}
]
}

(represented as a string), then the response will the sole Person instance
with id equal to 1.

HTTP/1.1 200 OK

{"id": 1, "name": "Jeffrey", "age": 24}

In the case that the search would return no results or more than one result, an
error response is returned instead.

{
 "single": true,
 "filters":
 [
 {"name": "age", "op": "ge", "val": 10}
]
}

HTTP/1.1 400 Bad Request

{"message": "Multiple results found"}

{
 "single": true,
 "filters":
 [
 {"name": "id", "op": "eq", "val": -1}
]
}

HTTP/1.1 400 Bad Request

{"message": "No result found"}

Comparing two attributes

If query parameter q has the value

{"filters": [{"name": "age", "op": "ge", "field": "height"}]}

(represented as a string), then the response will include only those Person
instances which have age attribute greater than or equal to the value of
the height attribute.

HTTP/1.1 200 OK

{ "objects":
 [
 {"id": 1, "name": "John", "age": 80, "height": 65},
 {"id": 2, "name": "Mary", "age": 73, "height": 60}
]
}

Comparing attribute of a relation

If query parameter q has the value

{ "filters":
 [
 {"name": "computers__manufacturer", "val": "Dell", "op": "any"}
]
}

(represented as a string), then the response will include only those Person
instances which are related to any Computer model which is manufactured by
Apple.

HTTP/1.1 200 OK

{ "objects": [
 {
 "id": 1,
 "name": "John",
 "computers": [
 { "id": 1, "manufacturer": "Dell", "model": "Inspiron 9300"},
 { "id": 2, "manufacturer": "Apple", "model": "MacBook"}
]
 },
 {
 "id": 2,
 "name": "Mary",
 "computers": [
 { "id": 3, "manufacturer": "Apple", "model": "iMac"}
]
 }
]
}

 Copyright 2012 Jeffrey Finkelstein.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.9.3

 	0.9.2

 	0.9.1

 	0.9.0

 	0.8.0

 	0.7.0

 	0.6

 	0.5

 	0.4

 	0.3

 Format of requests and responses

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Flask-Restless 0.4 documentation

Format of requests and responses

Requests and responses are all in JSON format, so the mimetype is
application/json. Ensure that requests you make have the correct
mimetype and/or content type.

Suppose we have the following models:

from flask.ext.restless import Entity
from elixir import Date, DateTime, Field, Unicode
from elixir import ManyToOne, OneToMany

class Person(Entity):
 name = Field(Unicode, unique=True)
 birth_date = Field(Date)
 computers = OneToMany('Computer')

class Computer(flask.ext.restless.Entity):
 name = Field(Unicode, unique=True)
 vendor = Field(Unicode)
 owner = ManyToOne('Person')
 purchase_time = Field(DateTime)

Also suppose we have registered an API for these models at /api/person and
/api/computer, respectively.

Note

For all requests that would return a list of results, the top-level JSON
object is a mapping from "objects" to the list. JSON lists are not sent
as top-level objects for security reasons. For more information, see this [http://flask.pocoo.org/docs/security/#json-security].

	
GET /api/person

	Gets a list of all Person objects.

Sample response:

HTTP/1.1 200 OK

{"objects": [{"id": 1, "name": "Jeffrey", "age": 24}, ...]}

	
GET /api/person?q=<searchjson>

	Gets a list of all Person objects which meet the criteria of the
specified search. For more information on the format of the value of the
q parameter, see Making search queries.

Sample response:

HTTP/1.1 200 OK

{"objects": [{"id": 1, "name": "Jeffrey", "age": 24}, ...]}

If the value of the q parameter indicates that a function should be
evaluated on the matched instances instead, the response would look like
this:

HTTP/1.1 200 OK

{"sum__age": 135, "avg__age": 25.5, ...}

	
GET /api/person/(int: id)

	Gets a single instance of Person with the specified ID.

Sample response:

HTTP/1.1 200 OK

{"id": 1, "name": "Jeffrey", "age": 24}

	
DELETE /api/person/(int: id)

	Deletes the instance of Person with the specified ID.

Sample response:

HTTP/1.1 204 No Content

	
POST /api/person

	Creates a new person with initial attributes specified as a JSON string in
the body of the request.

Sample request:

POST /api/person HTTP/1.1
Host: example.com

{"name": "Jeffrey", "age": 24}

Sample response:

HTTP/1.1 201 Created

{"id": 1}

	
PATCH /api/person?q=<searchjson>

	

	
PUT /api/person/?q=<searchjson>

	Sets specified attributes on every instance of Person which meets the
search criteria described in the q query parameter.
PUT /api/person is an alias for PATCH /api/person, because
the latter is more semantically correct but the former is part of the core
HTTP standard. For more information on the format of the value of the q
parameter, see Making search queries.

The response will return a JSON object which specifies the number of
instances in the Person database which were modified.

Sample request:

Suppose the database contains exactly three people with the letter “y” in
their names. Suppose that the client makes a request that has query
parameter q set to the following JSON object (as a string):

{ "filters": [{"name": "name", "op": "like", "val": "%y%"}] }

and with the content of the request:

PATCH /api/person/1 HTTP/1.1
Host: example.com

{"age": 1}

Sample response:

HTTP/1.1 201 Created

{"num_modified": 3}

	
PATCH /api/person/(int: id)

	

	
PUT /api/person/(int: id)

	Sets specified attributes on the instance of Person with the specified
ID number. PUT /api/person/1 is an alias for
PATCH /api/person/1, because the latter is more semantically correct
but the former is part of the core HTTP standard.

Sample request:

PATCH /api/person/1 HTTP/1.1
Host: example.com

{"name": "Foobar"}

Sample response:

HTTP/1.1 201 Created

{"id": 1, "name": "Foobar", "age": 24}

To add an existing object to a one-to-many relationship, a request must take
the following form.

Sample request:

PATCH /api/person/1 HTTP/1.1
Host: example.com

{ "computers":
 {
 "add": [{"id": 1}]
 }
}

Sample response:

HTTP/1.1 200 OK

{
 "id": 1,
 "name": "Jeffrey",
 "age": 24,
 "computers": [{"id": 1, "manufacturer": "Dell", "model": "Inspiron"}]
}

To add a new object to a one-to-many relationship, a request must take the
following form.

Sample request:

PATCH /api/person/1 HTTP/1.1
Host: example.com

{ "computers":
 {
 "add": [{"id": 1}]
 }
}

Warning

The response does not denote that a new instance has been created for the
Computer model.

Sample response:

HTTP/1.1 200 OK

{
 "id": 1,
 "name": "Jeffrey",
 "age": 24,
 "computers": [{"id": 1, "manufacturer": "Dell", "model": "Inspiron"}]
}

To remove an existing object (without deleting that object from its own
database) from a one-to-many relationship, a request must take the following
form.

Sample request:

PATCH /api/person/1 HTTP/1.1
Host: example.com

{ "computers":
 {
 "remove": [{"id": 2}]
 }
}

Sample response:

HTTP/1.1 200 OK

{
 "id": 1,
 "name": "Jeffrey",
 "age": 24,
 "computers": [
 {"id": 1, "manufacturer": "Dell", "model": "Inspiron 9300"},
 {"id": 3, "manufacturer": "Apple", "model": "MacBook"}
]
}

To remove an existing object from a one-to-many relationship and
additionally delete it from its own database, a request must take the
following form.

Sample request:

PATCH /api/person/1 HTTP/1.1
Host: example.com

{ "computers":
 {
 "remove": [{"id": 2, "__delete__": true}]
 }
}

Warning

The response does not denote that the instance was deleted from its own
database.

Sample response:

HTTP/1.1 200 OK

{
 "id": 1,
 "name": "Jeffrey",
 "age": 24,
 "computers": [
 {"id": 1, "manufacturer": "Dell", "model": "Inspiron 9300"},
 {"id": 3, "manufacturer": "Apple", "model": "MacBook"}
]
}

Error messages

Most errors return 400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1]. A bad request, for example, will
receive a response like this:

HTTP/1.1 400 Bad Request

{"message": "Unable to decode data"}

Function evaluation

If the allow_functions keyword argument is set to True when creating an
API for a model using APIManager.create_api(), then an endpoint will be
made available for GET /api/eval/person which responds to requests for
evaluation of functions on all instances the model.

Sample request:

GET /api/eval/person HTTP/1.1

{ "functions":
 [
 {"name": "sum", "field": "age"},
 {"name": "avg", "field": "height"}
]
}

The format of the response is

HTTP/1.1 200 OK

{"sum__age": 100, "avg_height": 68}

If no functions are specified in the request, the response will contain
the empty JSON object, {}.

Note

The functions whose names are given in the request will be evaluated using
SQLAlchemy’s func [http://docs.sqlalchemy.org/en/latest/core/expression_api.html#sqlalchemy.sql.expression.func]
object.

 Copyright 2012 Jeffrey Finkelstein.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.9.3

 	0.9.2

 	0.9.1

 	0.9.0

 	0.8.0

 	0.7.0

 	0.6

 	0.5

 	0.4

 	0.3

 Validation

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Flask-Restless 0.4 documentation

Validation

Flask-Restless does not do any validation. It simply passes requests on to the
database directly. If you want database-level validation, you must implement it
in your own classes. However, Flask-Restless will capture exceptions and return
them as error responses with an error message in JSON as the body of the
response.

For example...

 Copyright 2012 Jeffrey Finkelstein.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.9.3

 	0.9.2

 	0.9.1

 	0.9.0

 	0.8.0

 	0.7.0

 	0.6

 	0.5

 	0.4

 	0.3

 API

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Flask-Restless 0.4 documentation

API

This part of the documentation documents all the public classes and functions
in Flask-Restless.

 Copyright 2012 Jeffrey Finkelstein.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.9.3

 	0.9.2

 	0.9.1

 	0.9.0

 	0.8.0

 	0.7.0

 	0.6

 	0.5

 	0.4

 	0.3

 Copyright and license

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Flask-Restless 0.4 documentation

Copyright and license

Flask-Restless is copyright 2011 Lincoln de Sousa and copyright 2012 Jeffrey
Finkelstein. It is licensed under the GNU Affero General Public License,
version 3 [http://fsf.org/licenses/agpl.html] or later.

The artwork for Flask-Restless is copyright 2012 Jeffrey Finkelstein. The couch
logo is licensed under the Creative Commons Attribute-ShareAlike 3.0 license [http://creativecommons.org/licenses/by-sa/3.0]. The original image is a
scan of a (now public domain) illustration by Arthur Hopkins in a serial
edition of “The Return of the Native” by Thomas Hardy published in October
1878. The couch logo with the “Flask-Restless” text is licensed under the
Flask Artwork License [http://flask.pocoo.org/docs/license/#flask-artwork-license].

The documentation is licensed under the Creative Commons Attribute-ShareAlike
3.0 license [http://creativecommons.org/licenses/by-sa/3.0].

 Copyright 2012 Jeffrey Finkelstein.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.9.3

 	0.9.2

 	0.9.1

 	0.9.0

 	0.8.0

 	0.7.0

 	0.6

 	0.5

 	0.4

 	0.3

 Changelog

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 previous |

 	Flask-Restless 0.4 documentation

Changelog

Here you can see the full list of changes between each Flask-Restless release.

Version 0.4

Released on March 29, 2012.

	Added Python 2.5 and Python 2.6 support.

	Allow users to specify which HTTP methods for a particular API will require
authentication and how that authentication will take place.

	Created base classes for test cases.

	Moved the evaluate_functions function out of the
flask_restless.search module and corrected documentation about how
function evaluation works.

	Added allow_functions keyword argument to
create_api().

	Fixed bug where we weren’t allowing PUT requests in
create_api().

	Added collection_name keyword argument to
create_api() to allow user provided names in
URLs.

	Added allow_patch_many keyword argument to
create_api() to allow enabling or disabling
the PATCH many functionality.

	Disable the PATCH many functionality by default.

Version 0.3

Released on March 4, 2012.

	Initial release in Flask extension format.

 Copyright 2012 Jeffrey Finkelstein.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.9.3

 	0.9.2

 	0.9.1

 	0.9.0

 	0.8.0

 	0.7.0

 	0.6

 	0.5

 	0.4

 	0.3

 HTTP Routing Table

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	Flask-Restless 0.4 documentation

 HTTP Routing Table

 /api

 			

 		
 /api	

 	
 	
 GET /api/person	

 	
 	
 POST /api/person	

 	
 	
 GET /api/person/(int:id)	

 	
 	
 PATCH /api/person/(int:id)	

 	
 	
 PUT /api/person/(int:id)	

 	
 	
 DELETE /api/person/(int:id)	

 	
 	
 PUT /api/person/?q=<searchjson>	

 	
 	
 GET /api/person?q=<searchjson>	

 	
 	
 PATCH /api/person?q=<searchjson>	

 	
 	
 PUT /api/person?q=<searchjson>	

 Copyright 2012 Jeffrey Finkelstein.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.9.3

 	0.9.2

 	0.9.1

 	0.9.0

 	0.8.0

 	0.7.0

 	0.6

 	0.5

 	0.4

 	0.3

 Python Module Index

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	Flask-Restless 0.4 documentation

 Python Module Index

 f

 			

 		
 f	

 	[image: -]
 	
 flask	

 	
 	
 flask.ext.restless	

 Copyright 2012 Jeffrey Finkelstein.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.9.3

 	0.9.2

 	0.9.1

 	0.9.0

 	0.8.0

 	0.7.0

 	0.6

 	0.5

 	0.4

 	0.3

 Index

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	Flask-Restless 0.4 documentation

Index

 F

F

 	

 	flask.ext.restless (module)

 Copyright 2012 Jeffrey Finkelstein.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.9.3

 	0.9.2

 	0.9.1

 	0.9.0

 	0.8.0

 	0.7.0

 	0.6

 	0.5

 	0.4

 	0.3

 _static/minus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		Flask-Restless 0.4 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012 Jeffrey Finkelstein.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

 		0.9.3

 		0.9.2

 		0.9.1

 		0.9.0

 		0.8.0

 		0.7.0

 		0.6

 		0.5

 		0.4

 		0.3

_sta