

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	Flask-Restless 1.0.0b1 documentation

Flask-Restless

Flask-Restless provides simple generation of ReSTful APIs for database
models defined using SQLAlchemy (or Flask-SQLAlchemy). The generated APIs
satisfy the requirements of the JSON API [http://jsonapi.org] specification.

Warning

This is a “beta” version, so there may be more bugs than usual. There are
two fairly serious known issues with this version.

First, updating relationships via association proxies [https://docs.sqlalchemy.org/en/latest/orm/extensions/associationproxy.html] is not working
correctly. We cannot support many-to-many relationships until this is
resolved. If you have any insight on how to fix this, please comment on
GitHub issue #480.

Second, we would like to make it easy to support serialization via third
party serialization libraries such as Marshmallow [https://marshmallow.readthedocs.org/]. In order to do this
correctly, we need to separate serialization and deserialization into two
parts each: (de)serializing a single resource and (de)serializing many
resources from a JSON API document. I have not quite finished this yet. You
can see the updated Marshmallow example [https://github.com/jfinkels/flask-restless/compare/marshmallow-example] on GitHub, but it will not work
until the serialization code is updated. If you have any comments, please
file a new issue on GitHub.

User’s guide

How to use Flask-Restless in your own projects. Much of the documentation in
this chapter assumes some familiarity with the terminology and interfaces of
the JSON API specification.

	Downloading and installing Flask-Restless

	Quickstart

	Creating API endpoints
	Deferred API registration

	Requests and responses
	Fetching resources and relationships

	Creating resources

	Deleting resources

	Updating resources

	Updating relationships

	Resource ID must be a string

	Trailing slashes in URLs

	Date and time fields

	Errors and error messages

	JSONP callbacks

	JSON API extensions

	Cross-Origin Resource Sharing (CORS)

	Customizing the ReSTful interface
	HTTP methods

	API prefix

	Collection name

	Specifying one of many primary keys

	Enable bulk operations

	Custom serialization

	Capturing validation errors

	Request preprocessors and postprocessors

	Custom queries

API reference

A technical description of the classes, functions, and idioms of
Flask-Restless.

	API
	The API Manager class

	Global helper functions

	Serialization helpers

	Pre- and postprocessor helpers

Additional information

Meta-information on Flask-Restless.

	Similar projects

	Copyright and license

	Changelog
	Version 1.0.0b1

	Older versions

 Copyright 2012, 2013, 2014, 2015, 2016 Jeffrey Finkelstein and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Flask-Restless 1.0.0b1 documentation

Downloading and installing Flask-Restless

Flask-Restless can be downloaded from the Python Package Index [https://pypi.python.org/pypi/Flask-Restless]. The
development version can be downloaded from GitHub [https://github.com/jfinkels/flask-restless]. However, it is better to
install with pip (in a virtual environment provided by virtualenv):

pip install Flask-Restless

Flask-Restless supports all Python versions that Flask supports, which
currently include versions 2.6, 2.7, 3.3, and 3.4.

Flask-Restless has the following dependencies (which will be automatically
installed if you use pip):

	Flask [http://flask.pocoo.org] version 0.10 or greater

	SQLAlchemy [https://sqlalchemy.org] version 0.8 or greater

	mimerender [https://mimerender.readthedocs.org] version 0.5.2 or greater

	python-dateutil [http://labix.org/python-dateutil] version strictly greater than 2.2

	Flask-SQLAlchemy [https://packages.python.org/Flask-SQLAlchemy], only if you want to define your models using
Flask-SQLAlchemy (which we recommend)

 Copyright 2012, 2013, 2014, 2015, 2016 Jeffrey Finkelstein and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Flask-Restless 1.0.0b1 documentation

Quickstart

For the restless:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

	import flask
import flask.ext.sqlalchemy
import flask.ext.restless

Create the Flask application and the Flask-SQLAlchemy object.
app = flask.Flask(__name__)
app.config['DEBUG'] = True
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:////tmp/test.db'
db = flask.ext.sqlalchemy.SQLAlchemy(app)

Create your Flask-SQLALchemy models as usual but with the following
restriction: they must have an __init__ method that accepts keyword
arguments for all columns (the constructor in
flask.ext.sqlalchemy.SQLAlchemy.Model supplies such a method, so you
don't need to declare a new one).
class Person(db.Model):
 id = db.Column(db.Integer, primary_key=True)
 name = db.Column(db.Unicode)
 birth_date = db.Column(db.Date)

class Article(db.Model):
 id = db.Column(db.Integer, primary_key=True)
 title = db.Column(db.Unicode)
 published_at = db.Column(db.DateTime)
 author_id = db.Column(db.Integer, db.ForeignKey('person.id'))
 author = db.relationship(Person, backref=db.backref('articles',
 lazy='dynamic'))

Create the database tables.
db.create_all()

Create the Flask-Restless API manager.
manager = flask.ext.restless.APIManager(app, flask_sqlalchemy_db=db)

Create API endpoints, which will be available at /api/<tablename> by
default. Allowed HTTP methods can be specified as well.
manager.create_api(Person, methods=['GET', 'POST', 'DELETE'])
manager.create_api(Article, methods=['GET'])

start the flask loop
app.run()

You may find this example at examples/quickstart.py in the source
distribution; you may also view it online [https://github.com/jfinkels/flask-restless/tree/master/examples/quickstart.py]. Further examples can be found in
the examples/ directory in the source distribution or on the web [https://github.com/jfinkels/flask-restless/tree/master/examples>]

 Copyright 2012, 2013, 2014, 2015, 2016 Jeffrey Finkelstein and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Flask-Restless 1.0.0b1 documentation

Creating API endpoints

To use this extension, you must have defined your database models using either
SQLAlchemy or Flask-SQLALchemy. The basic setup in either case is nearly the
same.

If you have defined your models with Flask-SQLAlchemy, first, create your
Flask [http://flask.pocoo.org/docs/api/#flask.Flask] object, SQLAlchemy object,
and model classes as usual but with one additional restriction: each model must
have a primary key column named id of type sqlalchemy.Integer or
type sqlalchemy.Unicode.

from flask import Flask
from flask.ext.sqlalchemy import SQLAlchemy

app = Flask(__name__)
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:////tmp/test.db'
db = SQLAlchemy(app)

class Person(db.Model):
 id = db.Column(db.Integer, primary_key=True)

class Article(db.Model):
 id = db.Column(db.Integer, primary_key=True)
 author_id = db.Column(db.Integer, db.ForeignKey('person.id'))
 author = db.relationship(Person, backref=db.backref('articles'))

db.create_all()

If you are using pure SQLAlchemy:

from flask import Flask
from sqlalchemy import Column, Integer, Unicode
from sqlalchemy import ForeignKey
from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import backref, relationship
from sqlalchemy.orm import scoped_session, sessionmaker

app = Flask(__name__)
engine = create_engine('sqlite:////tmp/testdb.sqlite', convert_unicode=True)
Session = sessionmaker(autocommit=False, autoflush=False, bind=engine)
mysession = scoped_session(Session)

Base = declarative_base()
Base.metadata.bind = engine

class Person(Base):
 id = Column(Integer, primary_key=True)

class Article(Base):
 id = Column(Integer, primary_key=True)
 author_id = Column(Integer, ForeignKey('person.id'))
 author = relationship(Person, backref=backref('articles'))

Base.metadata.create_all()

Second, instantiate an APIManager object with the
Flask [http://flask.pocoo.org/docs/api/#flask.Flask] and SQLAlchemy objects:

from flask.ext.restless import APIManager

manager = APIManager(app, flask_sqlalchemy_db=db)

Or if you are using pure SQLAlchemy, specify the session you created above
instead:

manager = APIManager(app, session=mysession)

Third, create the API endpoints that will be accessible to web clients:

person_blueprint = manager.create_api(Person, methods=['GET', 'POST'])
article_blueprint = manager.create_api(Article)

You can specify which HTTP methods are available for each API endpoint. In this
example, the client can fetch and create people, but only fetch articles (the
default if no methods are specified). There are many options for customizing
the endpoints created at this step; for more information, see
Customizing the ReSTful interface.

Due to the design of Flask, these APIs must be created before your application
handles any requests. The return value of APIManager.create_api() is the
blueprint in which the endpoints for the specified database model live. The
blueprint has already been registered on the Flask [http://flask.pocoo.org/docs/api/#flask.Flask] application,
so you do not need to register it yourself. It is provided so that you can
examine its attributes, but if you don’t need it then just ignore it:

methods = ['GET', 'POST']
manager.create_api(Person, methods=methods)
manager.create_api(Article)

If you wish to create the blueprint for the API without registering it (for
example, if you wish to register it manually later in your code), use the
create_api_blueprint() method instead. You must provide an
additional positional argument, name, to this method:

blueprint = manager.create_api_blueprint('person', Person, methods=methods)
later...
someapp.register_blueprint(blueprint)

By default, the API for Person in the above code samples will be accessible
at <base_url>/api/person, where the person part of the URL is the value
of Person.__tablename__:

>>> import json
>>> # The python-requests library is installable from PyPI.
>>> import requests
>>> # Let's create a new person resource with the following fields.
>>> newperson = {'type': 'person', 'name': u'Lincoln', 'age': 23}
>>> # Our requests must have the appropriate JSON API headers.
>>> headers = {'Content-Type': 'application/vnd.api+json',
... 'Accept': 'application/vnd.api+json'}
>>> # Assume we have a Flask application running on localhost.
>>> r = requests.post('http://localhost/api/person',
... data=json.dumps(newperson), headers=headers)
>>> r.status_code
201
>>> document = json.loads(r.data)
>>> dumps(document, indent=2)
{
 "data": {
 "id": "1",
 "type": "person",
 "relationships": {
 "articles": {
 "data": [],
 "links": {
 "related": "http://localhost/api/person/1/articles",
 "self": "http://localhost/api/person/1/relationships/articles"
 }
 },
 },
 "links": {
 "self": "http://localhost/api/person/1"
 }
 }
 "meta": {},
 "jsonapi": {
 "version": "1.0"
 }
}
>>> newid = document['data']['id']
>>> r = requests.get('/api/person/{0}'.format(newid), headers=headers)
>>> r.status_code
200
>>> document = loads(r.data)
>>> dumps(document, indent=2)
{
 "data": {
 "id": "1",
 "type": "person",
 "relationships": {
 "articles": {
 "data": [],
 "links": {
 "related": "http://localhost/api/person/1/articles",
 "self": "http://localhost/api/person/1/relationships/articles"
 }
 },
 },
 "links": {
 "self": "http://localhost/api/person/1"
 }
 }
 "meta": {},
 "jsonapi": {
 "version": "1.0"
 }
}

If the primary key is a Unicode instead of an
Integer, the instances will be accessible at URL endpoints
like http://<host>:<port>/api/person/foo instead of
http://<host>:<port>/api/person/1.

Deferred API registration

If you only wish to create APIs on a single Flask application and have access
to the Flask application before you create the APIs, you can provide a Flask
application as an argument to the constructor of the APIManager class,
as described above. However, if you wish to create APIs on multiple Flask
applications or if you do not have access to the Flask application at the time
you create the APIs, you can use the APIManager.init_app() method.

If a APIManager object is created without a Flask application,

manager = APIManager(session=session)

then you can create your APIs without registering them on a particular Flask
application:

manager.create_api(Person)
manager.create_api(Article)

Later, you can call the init_app() method with any
Flask [http://flask.pocoo.org/docs/api/#flask.Flask] objects on which you would like the APIs to be
available:

app1 = Flask('app1')
app2 = Flask('app2')
manager.init_app(app1)
manager.init_app(app2)

The manager creates and stores a blueprint each time
create_api() is invoked, and registers those blueprints each
time init_app() is invoked. (The name of each blueprint will
be a uuid.UUID [http://docs.python.org/library/uuid.html#uuid.UUID].)

Changed in version 1.0.0: The behavior of the init_app() method was strange and
incorrect before version 1.0.0. It is best not to use earlier versions.

 Copyright 2012, 2013, 2014, 2015, 2016 Jeffrey Finkelstein and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Flask-Restless 1.0.0b1 documentation

Requests and responses

Requests and responses are all in the JSON API format, so each request must
include an Accept [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.1] header whose value is
application/vnd.api+json and any request that contains content must
include a Content-Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17] header whose value is
application/vnd.api+json. If they do not, the client will receive
an error response.

This section of the documentation assumes some familiarity with the JSON API
specification.

	Fetching resources and relationships
	Function evaluation

	Inclusion of related resources

	Specifying which fields appear in responses

	Sorting

	Pagination

	Filtering

	Creating resources

	Deleting resources

	Updating resources

	Updating relationships

Resource ID must be a string

As required by the JSON API, the ID (and type) of a resource must be a string
in request and response documents. This does not mean that the primary key in
the database must be a string, only that it will appear as a string in
communications between the client and the server. For more information, see the
Identification [http://jsonapi.org/format/#document-resource-object-identification] section of the JSON API specification.

Trailing slashes in URLs

API endpoints do not have trailing slashes. A GET [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3] request to,
for example, /api/person/ will result in a 404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] response.

Date and time fields

Flask-Restless will automatically parse and convert date and time strings into
the corresponding Python objects. Flask-Restless also understands intervals
(also known as durations), if you specify the interval as an integer
representing the number of units that the interval spans.

If you want the server to set the value of a date or time field of a model as
the current time (as measured at the server), use one of the special strings
"CURRENT_TIMESTAMP", "CURRENT_DATE", or "LOCALTIMESTAMP". When the
server receives one of these strings in a request, it will use the
corresponding SQL function to set the date or time of the field in the model.

Errors and error messages

Flask-Restless returns the error responses required by the JSON API
specification, and most other server errors yield a
400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1]. Errors are included in the errors element in the
top-level JSON document in the response body.

If a request triggers certain types of errors, the SQLAlchemy session will be
rolled back. Currently these errors are

	DataError [http://sqlalchemy.org/docs/core/exceptions.html#sqlalchemy.exc.DataError],

	IntegrityError [http://sqlalchemy.org/docs/core/exceptions.html#sqlalchemy.exc.IntegrityError],

	ProgrammingError [http://sqlalchemy.org/docs/core/exceptions.html#sqlalchemy.exc.ProgrammingError],

	FlushError [http://sqlalchemy.org/docs/orm/exceptions.html#sqlalchemy.orm.exc.FlushError].

JSONP callbacks

Flask-Restless responds to JavaScript clients that request JSONP responses. Add
a callback=myfunc query parameter to the request URL on any request that
yields a response that contains content (including endpoints for function
evaluation; see Function evaluation) to have the JSON data of the
response wrapped in the Javascript function myfunc. This can be used to
circumvent some cross domain scripting security issues.

The Content-Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17] of a JSONP response is
application/javascript instead of
application/vnd.api+json because the payload of such a response is
not valid JSON API.

For example, a request like this:

GET /api/person/1?callback=foo HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

will produce a response like this:

HTTP/1.1 200 OK
Content-Type: application/javascript

foo({"meta": {/*...*/}, "data": {/*...*/}})

Then in your Javascript client code, write the function foo like this:

function foo(response) {
 var meta, data;
 meta = response.meta;
 data = response.data;
 // Do something cool here...
}

JSON API extensions

Flask-Restless does not yet support the official JSON API extension. For
progress on the implementation of the official extensions, see GitHub issues
#478 and #477.

Cross-Origin Resource Sharing (CORS)

Cross-Origin Resource Sharing (CORS) [http://enable-cors.org] is a protocol that allows JavaScript
HTTP clients to make HTTP requests across Internet domain boundaries while
still protecting against cross-site scripting (XSS) attacks. If you have access
to the HTTP server that serves your Flask application, I recommend configuring
CORS there, since such concerns are beyond the scope of Flask-Restless.
However, in case you need to support CORS at the application level, you should
create a function that adds the necessary HTTP headers after the request has
been processed by Flask-Restless (that is, just before the HTTP response is
sent from the server to the client) using the
flask.Blueprint.after_request() [http://flask.pocoo.org/docs/api/#flask.Blueprint.after_request] method:

from flask import Flask
from flask.ext.restless import APIManager

def add_cors_headers(response):
 response.headers['Access-Control-Allow-Origin'] = 'example.com'
 response.headers['Access-Control-Allow-Credentials'] = 'true'
 # Set whatever other headers you like...
 return response

app = Flask(__name__)
manager = APIManager(app)
blueprint = manager.create_api_blueprint('mypersonapi', Person)
blueprint.after_request(add_cors_headers)
app.register_blueprint(blueprint)

 Copyright 2012, 2013, 2014, 2015, 2016 Jeffrey Finkelstein and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Flask-Restless 1.0.0b1 documentation

 	Requests and responses

Fetching resources and relationships

For the purposes of concreteness in this section, suppose we have executed the
following code on the server:

from flask import Flask
from flask.ext.sqlalchemy import SQLAlchemy
from flask.ext.restless import APIManager

app = Flask(__name__)
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:////tmp/test.db'
db = SQLAlchemy(app)

class Person(db.Model):
 id = db.Column(db.Integer, primary_key=True)

class Article(db.Model):
 id = db.Column(db.Integer, primary_key=True)
 author_id = db.Column(db.Integer, db.ForeignKey('person.id'))
 author = db.relationship(Person, backref=db.backref('articles'))

db.create_all()
manager = APIManager(app, flask_sqlalchemy_db=db)
manager.create_api(Person)
manager.create_api(Article)

By default, all columns and relationships will appear in the resource object
representation of an instance of your model. See Specifying which fields appear in responses for more
information on specifying which values appear in responses.

To fetch a collection of resources, the request

GET /api/person HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

yields the response

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
 "data": [
 {
 "id": "1",
 "links": {
 "self": "http://example.com/api/person/1"
 },
 "relationships": {
 "articles": {
 "data": [],
 "links": {
 "related": "http://example.com/api/person/1/articles",
 "self": "http://example.com/api/person/1/relationships/articles"
 }
 }
 },
 "type": "person"
 }
],
 "links": {
 "first": "http://example.com/api/person?page[number]=1&page[size]=10",
 "last": "http://example.com/api/person?page[number]=1&page[size]=10",
 "next": null,
 "prev": null,
 "self": "http://example.com/api/person"
 },
 "meta": {
 "total": 1
 }
}

To fetch a single resource, the request

GET /api/person/1 HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

yields the response

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
 "data": {
 "id": "1",
 "links": {
 "self": "http://example.com/api/person/1"
 },
 "relationships": {
 "articles": {
 "data": [],
 "links": {
 "related": "http://example.com/api/person/1/articles",
 "self": "http://example.com/api/person/1/relationships/articles"
 }
 }
 },
 "type": "person"
 }
}

To fetch a resource from a to-one relationship, the request

GET /api/article/1/author HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

yields the response

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
 "data": {
 "id": "1",
 "links": {
 "self": "http://example.com/api/person/1"
 },
 "relationships": {
 "articles": {
 "data": [
 {
 "id": "1",
 "type": "article"
 }
],
 "links": {
 "related": "http://example.com/api/person/1/articles",
 "self": "http://example.com/api/person/1/relationships/articles"
 }
 }
 },
 "type": "person"
 }
}

To fetch a resource from a to-many relationship, the request

GET /api/person/1/articles HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

yields the response

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
 "data": [
 {
 "id": "2",
 "links": {
 "self": "http://example.com/api/articles/2"
 },
 "relationships": {
 "author": {
 "data": {
 "id": "1",
 "type": "person",
 },
 "links": {
 "related": "http://example.com/api/articles/2/author",
 "self": "http://example.com/api/articles/2/relationships/author"
 }
 }
 },
 "type": "article"
 }
],
 "links": {
 "first": "http://example.com/api/person/1/articles?page[number]=1&page[size]=10",
 "last": "http://example.com/api/person/1/articles?page[number]=1&page[size]=10",
 "next": null,
 "prev": null,
 "self": "http://example.com/api/person/1/articles"
 },
 "meta": {
 "total": 1
 }
}

To fetch a single resource from a to-many relationship, the request

GET /api/person/1/articles/2 HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

yields the response

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
 "data": {
 "id": "2",
 "links": {
 "self": "http://example.com/api/articles/2"
 },
 "relationships": {
 "author": {
 "data": {
 "id": "1",
 "type": "person"
 },
 "links": {
 "related": "http://example.com/api/articles/2/author",
 "self": "http://example.com/api/articles/2/relationships/author"
 }
 }
 },
 "type": "article"
 }
}

To fetch the link object for a to-one relationship, the request

GET /api/article/1/relationships/author HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

yields the response

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
 "data": {
 "id": "1",
 "type": "person"
 }
}

To fetch the link objects for a to-many relationship, the request

GET /api/person/1/relationships/articles HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

yields the response

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
 "data": [
 {
 "id": "1",
 "type": "article"
 },
 {
 "id": "2",
 "type": "article"
 }
]
}

Function evaluation

This section describes behavior that is not part of the JSON API specification.

If the allow_functions keyword argument to APIManager.create_api() is
set to True when creating an API for a model, then the endpoint
/api/eval/person will be made available for GET [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3]
requests. This endpoint responds to requests for evaluation of SQL functions on
all instances the model.

If the client specifies the functions query parameter, it must be a
percent-encoded [https://en.wikipedia.org/wiki/Percent-encoding#Percent-encoding_the_percent_character] list of function objects, as described below.

A function object is a JSON object. A function object must be of the
form

{"name": <function_name>, "field": <field_name>}

where <function_name> is the name of a SQL function as provided by
SQLAlchemy’s func [https://docs.sqlalchemy.org/en/latest/core/expression_api.html#sqlalchemy.sql.expression.func] object.

For example, to get the average age of all people in the database,

GET /api/eval/person?functions=[{"name":"avg","field":"age"}] HTTP/1.1
Host: example.com
Accept: application/json

The response will be a JSON object with a single element, data, containing
a list of the results of all the function evaluations requested by the client,
in the same order as in the functions query parameter. For example, to get
the sum and the average ages of all people in the database, the request

GET /api/eval/person?functions=[{"name":"avg","field":"age"},{"name":"sum","field":"age"}] HTTP/1.1
Host: example.com
Accept: application/json

yields the response

HTTP/1.1 200 OK
Content-Type: application/json

[15.0, 60.0]

Example

To get the total number of resources in the collection (that is, the number
of instances of the model), you can use the function object

{"name": "count", "field": "id"}

Then the request

GET /api/eval/person?functions=[{"name":"count","field":"id"}] HTTP/1.1
Host: example.com
Accept: application/json

yields the response

HTTP/1.1 200 OK
Content-Type: application/json

{
 "data": [42]
}

Inclusion of related resources

For more information on client-side included resources, see Inclusion of
Related Resources [http://jsonapi.org/format/#fetching-includes] in the JSON API specification.

By default, no related resources will be included in a compound document on
requests that would return data. For the client to request that the response
includes related resources in a compound document, use the include query
parameter. For example, to fetch a single resource and include all resources
related to it, the request

GET /api/person/1?include=articles HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

yields the response

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
 "data": {
 "id": "1",
 "links": {
 "self": "http://example.com/api/person/1"
 },
 "relationships": {
 "articles": {
 "data": [
 {
 "id": "1",
 "type": "article"
 }
],
 "links": {
 "related": "http://example.com/api/person/1/articles",
 "self": "http://example.com/api/person/1/relationships/articles"
 }
 }
 },
 "type": "person"
 }
 "included": [
 {
 "id": "1",
 "links": {
 "self": "http://example.com/api/article/1"
 },
 "relationships": {
 "author": {
 "data": {
 "id": "1",
 "type": "person"
 },
 "links": {
 "related": "http://example.com/api/article/1/author",
 "self": "http://example.com/api/article/1/relationships/author"
 }
 }
 },
 "type": "article"
 }
]
}

To specify a default set of related resources to include when the client does
not specify any include query parameter, use the includes keyword
argument to the APIManager.create_api() method.

Specifying which fields appear in responses

For more information on client-side sparse fieldsets, see Sparse Fieldsets [http://jsonapi.org/format/#fetching-sparse-fieldsets]
in the JSON API specification.

Warning

The server-side configuration for specifying which fields appear in resource
objects as described in this section is simplistic; a better way to specify
which fields are included in your responses is to use a Python object
serialization library and specify custom serialization and deserialization
functions as described in Custom serialization.

By default, all fields of your model will be exposed by the API. A client can
request that only certain fields appear in the resource object in a response to
a GET [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3] request by using the only query parameter. On the
server side, you can specify which fields appear in the resource object
representation of an instance of the model by setting the only, exclude
and additional_attributes keyword arguments to the
APIManager.create_api() method.

If only is an iterable of column names or actual column attributes, only
those fields will appear in the resource object that appears in responses to
fetch instances of this model. If instead exclude is specified, all fields
except those specified in that iterable will appear in responses. If
additional_attributes is an iterable of column names, the values of these
attributes will also appear in the response; this is useful if you wish to see
the value of some attribute that is not a column or relationship.

Attention

The type and id elements will always appear in the resource object,
regardless of whether the server or the client tries to exclude them.

For example, if your models are defined like this (using Flask-SQLAlchemy):

class Person(db.Model):
 id = db.Column(db.Integer, primary_key=True)
 name = db.Column(db.Unicode)
 birthday = db.Column(db.Date)
 articles = db.relationship('Article')

 # This class attribute is not a column.
 foo = 'bar'

class Article(db.Model):
 id = db.Column(db.Integer, primary_key=True)
 author_id = db.Column(db.Integer, db.ForeignKey('person.id'))

and you want your resource objects to include only the values of the name
and birthday columns, create your API with the following arguments:

apimanager.create_api(Person, only=['name', 'birthday'])

Now a request like

GET /api/person/1 HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

yields the response

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
 "data": {
 "id": "1",
 "links": {
 "self": "http://example.com/api/person/1"
 },
 "attributes": {
 "birthday": "1969-07-20",
 "name": "foo"
 },
 "type": "person"
 }
}

If you want your resource objects to exclude the birthday and name
columns:

apimanager.create_api(Person, exclude=['name', 'birthday'])

Now the same request yields the response

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
 "data": {
 "id": "1",
 "links": {
 "self": "http://example.com/api/person/1"
 }
 "relationships": {
 "articles": {
 "data": [],
 "links": {
 "related": "http://example.com/api/person/1/articles",
 "self": "http://example.com/api/person/1/links/articles"
 }
 },
 },
 "type": "person"
 }
}

If you want your resource objects to include the value for the class attribute
foo:

apimanager.create_api(Person, additional_attributes=['foo'])

Now the same request yields the response

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
 "data": {
 "attributes": {
 "birthday": "1969-07-20",
 "foo": "bar",
 "name": "foo"
 },
 "id": "1",
 "links": {
 "self": "http://example.com/api/person/1"
 }
 "relationships": {
 "articles": {
 "data": [],
 "links": {
 "related": "http://example.com/api/person/1/articles",
 "self": "http://example.com/api/person/1/links/articles"
 }
 }
 },
 "type": "person"
 }
}

Sorting

Clients can sort according to the sorting protocol described in the Sorting [http://jsonapi.org/format/#fetching-sorting] section of the JSON API
specification. Sorting by a nullable attribute will cause resources with null
attributes to appear first.

Clients can also request grouping by using the group query parameter. For
example, if your database has two people with name 'foo' and two people
with name 'bar', a request like

GET /api/person?group=name HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

yields the response

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
 "data": [
 {
 "attributes": {
 "name": "foo",
 },
 "id": "1",
 "links": {
 "self": "http://example.com/api/person/1"
 },
 "relationships": {
 "articles": {
 "data": [],
 "links": {
 "related": "http://example.com/api/person/1/articles",
 "self": "http://example.com/api/person/1/relationships/articles"
 }
 }
 },
 "type": "person"
 },
 {
 "attributes": {
 "name": "bar",
 },
 "id": "3",
 "links": {
 "self": "http://example.com/api/person/3"
 },
 "relationships": {
 "articles": {
 "data": [],
 "links": {
 "related": "http://example.com/api/person/3/articles",
 "self": "http://example.com/api/person/3/relationships/articles"
 }
 }
 },
 "type": "person"
 },
],
 "links": {
 "first": "http://example.com/api/person?group=name&page[number]=1&page[size]=10",
 "last": "http://example.com/api/person?group=name&page[number]=1&page[size]=10",
 "next": null,
 "prev": null,
 "self": "http://example.com/api/person?group=name"
 },
 "meta": {
 "total": 2
 }
}

Pagination

Pagination works as described in the JSON API specification, via the
page[number] and page[size] query parameters. Pagination respects
sorting, grouping, and filtering. The first page is page one. If no page number
is specified by the client, the first page will be returned. By default,
pagination is enabled and the page size is ten. If the page size specified by
the client is greater than the maximum page size as configured on the server,
then the query parameter will be ignored.

To set the default page size for collections of resources, use the
page_size keyword argument to the APIManager.create_api() method. To
set the maximum page size that the client can request, use the
max_page_size argument. Even if page_size is greater than
max_page_size, at most max_page_size resources will be returned in a
page. If max_page_size is set to anything but a positive integer, the
client will be able to specify arbitrarily large page sizes. If, further,
page_size is set to anything but a positive integer, pagination will be
disabled by default, and any GET [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3] request that does not specify a
page size in its query parameters will get a response with all matching
results.

Attention

Disabling pagination can result in arbitrarily large responses!

For example, to set each page to include only two results:

apimanager.create_api(Person, page_size=2)

Then a GET [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3] request to /api/person?page[number]=2 would yield
the response

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
 "data": [
 {
 "id": "3",
 "type": "person",
 "attributes": {
 "name": "John"
 }
 }
 {
 "id": "4",
 "type": "person",
 "attributes": {
 "name": "Paul"
 }
 }
],
 "links": {
 "first": "http://example.com/api/person?page[number]=1&page[size]=2",
 "last": "http://example.com/api/person?page[number]=3&page[size]=2",
 "next": "http://example.com/api/person?page[number]=3&page[size]=2",
 "prev": "http://example.com/api/person?page[number]=1&page[size]=2",
 "self": "http://example.com/api/person"
 },
 "meta": {
 "total": 6
 }
}

Filtering

Requests that would normally return a collection of resources can be filtered
so that only a subset of the resources are returned in a response. If the
client specifies the filter[objects] query parameter, it must be a
URL encoded [https://en.wikipedia.org/wiki/Percent-encoding] JSON list of filter objects, as described below.

Quick client examples for filtering

The following are some quick examples of making filtered GET [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3]
requests from different types of clients. More complete documentation is in
subsequent sections. In these examples, each client will filter by instances of
the model Person whose names contain the letter “y”.

Using the Python requests [http://docs.python-requests.org/en/latest/] library:

import requests
import json

url = 'http://127.0.0.1:5000/api/person'
headers = {'Accept': 'application/vnd.api+json'}

filters = [dict(name='name', op='like', val='%y%')]
params = {'filter[objects]': json.dumps(filters)}

response = requests.get(url, params=params, headers=headers)
assert response.status_code == 200
print(response.json())

Using jQuery [http://jquery.com/]:

var filters = [{"name": "id", "op": "like", "val": "%y%"}];
$.ajax({
 data: {"filter[objects]": JSON.stringify(filters)},
 headers: {
 "Accept": JSONAPI_MIMETYPE
 },
 success: function(data) { console.log(data.objects); },
 url: 'http://127.0.0.1:5000/api/person'
});

Using curl [http://curl.haxx.se/]:

curl \
 -G \
 -H "Accept: application/vnd.api+json" \
 -d "filter[objects]=[{\"name\":\"name\",\"op\":\"like\",\"val\":\"%y%\"}]" \
 http://127.0.0.1:5000/api/person

The examples/ directory has more complete versions of these examples.

Filter objects

A filter object is a JSON object. Filter objects are defined recursively
as follows. A filter object may be of the form

{"name": <field_name>, "op": <unary_operator>}

where <field_name> is the name of a field on the model whose instances are
being fetched and <unary_operator> is the name of one of the unary
operators supported by Flask-Restless. For example,

{"name": "birthday", "op": "is_null"}

A filter object may be of the form

{"name": <field_name>, "op": <binary_operator>, "val": <argument>}

where <binary_operator> is the name of one of the binary operators
supported by Flask-Restless and <argument> is the second argument to that
binary operator. For example,

{"name": "age", "op": "gt", "val": 23}

A filter object may be of the form

{"name": <field_name>, "op": <binary_operator>, "field": <field_name>}

The field element indicates that the second argument to the binary operator
should be the value of that field. For example, to filter by resources that
have a greater width than height,

{"name": "width", "op": "gt", "field": "height"}

A filter object may be of the form

{"name": <relation_name>, "op": <relation_operator>, "val": <filter_object>}

where <relation_name> is the name of a relationship on the model whose
resources are being fetched, <relation_operator> is either "has", for a
to-one relationship, or "any", for a to-many relationship, and
<filter_object> is another filter object. For example, to filter person
resources by only those people that have authored an article dated before
January 1, 2010,

{
 "name": "articles",
 "op": "any",
 "val": {
 "name": "date",
 "op": "lt",
 "val": "2010-01-01"
 }
}

For another example, to filter article resources by only those articles that
have an author of age at most fifty,

{
 "name": "author",
 "op": "has",
 "val": {
 "name": "age",
 "op": "lte",
 "val": 50
 }
}

A filter object may be a conjunction (“and”) or disjunction (“or”) of other
filter objects:

{"or": [<filter_object>, <filter_object>, ...]}

or

{"and": [<filter_object>, <filter_object>, ...]}

For example, to filter by resources that have width greater than height, and
length of at least ten,

{
 "and": [
 {"name": "width", "op": "gt", "field": "height"},
 {"name": "length", "op": "lte", "val": 10}
]
}

How are filter objects used in practice? To get a response in which only those
resources that meet the requirements of the filter objects are
returned, clients can make requests like this:

GET /api/person?filter[objects]=[{"name":"age","op":"<","val":18}] HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

Operators

Flask-Restless understands the following operators, which correspond to the
appropriate SQLAlchemy column operators [https://docs.sqlalchemy.org/en/latest/core/expression_api.html#sqlalchemy.sql.operators.ColumnOperators].

	==, eq, equals, equals_to

	!=, neq, does_not_equal, not_equal_to

	>, gt, <, lt

	>=, ge, gte, geq, <=, le, lte, leq

	in, not_in

	is_null, is_not_null

	like, ilike, not_like

	has

	any

Flask-Restless also understands the PostgreSQL network address operators [https://www.postgresql.org/docs/current/static/functions-net.html]
<<, <<=, >>, >>=, <>, and &&.

Warning

If you use a percent sign in the argument to the like operator (for
example, %somestring%), make sure it is percent-encoded [https://en.wikipedia.org/wiki/Percent-encoding#Percent-encoding_the_percent_character], otherwise
the server may interpret the first few characters of that argument as a
percent-encoded character when attempting to decode the URL.

Requiring singleton collections

If a client wishes a request for a collection to yield a response with a
singleton collection, the client can use the filter[single] query
parameter. The value of this parameter must be either 1 or 0. If the
value of this parameter is 1 and the response would yield a collection of
either zero or more than two resources, the server instead responds with
404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5].

For example, a request like

GET /api/person?filter[single]=1&filter[objects]=[{"name":"id","op":"eq","val":1}] HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

yields the response

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
 "data": {
 "id": "1",
 "type": "person",
 "links": {
 "self": "http://example.com/api/person/1"
 }
 },
 "links": {
 "self": "http://example.com/api/person?filter[single]=1&filter[objects]=[{\"name\":\"id\",\"op\":\"eq\",\"val\":1}]"
 },
}

But a request like

GET /api/person?filter[single]=1 HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

would yield an error response if there were more than one Person instance
in the database.

Filter object examples

Attribute greater than a value

On request

GET /api/person?filter[objects]=[{"name":"age","op":"gt","val":18}] HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

the response will include only those Person instances that have age
attribute greater than or equal to 18:

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
 "data": [
 {
 "attributes": {
 "age": 19
 },
 "id": "2",
 "links": {
 "self": "http://example.com/api/person/2"
 },
 "type": "person"
 },
 {
 "attributes": {
 "age": 29
 },
 "id": "5",
 "links": {
 "self": "http://example.com/api/person/5"
 },
 "type": "person"
 },
],
 "links": {
 "self": "/api/person?filter[objects]=[{\"name\":\"age\",\"op\":\"gt\",\"val\":18}]"
 },
 "meta": {
 "total": 2
 }
}

Arbitrary Boolean expression of filters

On request

GET /api/person?filter[objects]=[{"or":[{"name":"age","op":"lt","val":10},{"name":"age","op":"gt","val":20}]}] HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

the response will include only those Person instances that have age
attribute either less than 10 or greater than 20:

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
 "data": [
 {
 "attributes": {
 "age": 9
 },
 "id": "1",
 "links": {
 "self": "http://example.com/api/person/1"
 },
 "type": "person"
 },
 {
 "attributes": {
 "age": 25
 },
 "id": "3",
 "links": {
 "self": "http://example.com/api/person/3"
 },
 "type": "person"
 }
],
 "links": {
 "self": "/api/person?filter[objects]=[{\"or\":[{\"name\":\"age\",\"op\":\"lt\",\"val\":10},{\"name\":\"age\",\"op\":\"gt\",\"val\":20}]}]"
 },
 "meta": {
 "total": 2
 }
}

Comparing two attributes

On request

GET /api/box?filter[objects]=[{"name":"width","op":"ge","field":"height"}] HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

the response will include only those Box instances that have width
attribute greater than or equal to the value of the height attribute:

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
 "data": [
 {
 "attributes": {
 "height": 10,
 "width": 20
 }
 "id": "1",
 "links": {
 "self": "http://example.com/api/box/1"
 },
 "type": "box"
 },
 {
 "attributes": {
 "height": 15,
 "width": 20
 }
 "id": "2",
 "links": {
 "self": "http://example.com/api/box/2"
 },
 "type": "box"
 }
],
 "links": {
 "self": "/api/box?filter[objects]=[{\"name\":\"width\",\"op\":\"ge\",\"field\":\"height\"}]"
 },
 "meta": {
 "total": 100
 }
}

Using has and any

On request

GET /api/person?filter[objects]=[{"name":"articles","op":"any","val":{"name":"date","op":"lt","val":"2010-01-01"}}] HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

the response will include only those people that have authored an article dated
before January 1, 2010 (assume in the example below that at least one of the
article linkage objects refers to an article that has such a date):

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
 "data": [
 {
 "id": "1",
 "links": {
 "self": "http://example.com/api/person/1"
 },
 "relationships": {
 "articles": {
 "data": [
 {
 "id": "1",
 "type": "article"
 },
 {
 "id": "2",
 "type": "article"
 }
],
 "links": {
 "related": "http://example.com/api/person/1/articles",
 "self": "http://example.com/api/person/1/relationships/articles"
 }
 }
 },
 "type": "person"
 }
],
 "links": {
 "self": "/api/person?filter[objects]=[{\"name\":\"articles\",\"op\":\"any\",\"val\":{\"name\":\"date\",\"op\":\"lt\",\"val\":\"2010-01-01\"}}]"
 },
 "meta": {
 "total": 1
 }
}

On request

GET /api/article?filter[objects]=[{"name":"author","op":"has","val":{"name":"age","op":"lte","val":50}}] HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

the response will include only those articles that have an author of age at
most fifty (assume in the example below that the author linkage objects refers
to a person that has such an age):

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
 "data": [
 {
 "id": "1",
 "links": {
 "self": "http://example.com/api/article/1"
 },
 "relationships": {
 "author": {
 "data": {
 "id": "7",
 "type": "person"
 },
 "links": {
 "related": "http://example.com/api/article/1/author",
 "self": "http://example.com/api/article/1/relationships/author"
 }
 }
 },
 "type": "article"
 }
],
 "links": {
 "self": "/api/article?filter[objects]=[{\"name\":\"author\",\"op\":\"has\",\"val\":{\"name\":\"age\",\"op\":\"lte\",\"val\":50}}]"
 },
 "meta": {
 "total": 1
 }
}

 Copyright 2012, 2013, 2014, 2015, 2016 Jeffrey Finkelstein and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Flask-Restless 1.0.0b1 documentation

 	Requests and responses

Creating resources

For the purposes of concreteness in this section, suppose we have executed the
following code on the server:

from flask import Flask
from flask.ext.sqlalchemy import SQLAlchemy
from flask.ext.restless import APIManager

app = Flask(__name__)
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:////tmp/test.db'
db = SQLAlchemy(app)

class Person(db.Model):
 id = db.Column(db.Integer, primary_key=True)
 name = db.Column(db.Unicode)

db.create_all()
manager = APIManager(app, flask_sqlalchemy_db=db)
manager.create_api(Person, methods=['POST'])

To create a new resource, the request

POST /api/person HTTP/1.1
Host: example.com
Content-Type: application/vnd.api+json
Accept: application/vnd.api+json

{
 "data": {
 "type": "person",
 "attributes": {
 "name": "foo"
 }
 }
}

yields the response

HTTP/1.1 201 Created
Location: http://example.com/api/person/1
Content-Type: application/vnd.api+json

{
 "data": {
 "attributes": {
 "name": "foo"
 },
 "id": "1",
 "jsonapi": {
 {"version": "1.0"}
 },
 "links": {
 "self": "http://example.com/api/person/bd34b544-ad39-11e5-a2aa-4cbb58b9ee34"
 },
 "meta": {},
 "type": "person"
 }
}

To create a new resource with a client-generated ID (if enabled by setting
allow_client_generated_ids to True in APIManager.create_api()),
the request

POST /api/person HTTP/1.1
Host: example.com
Content-Type: application/vnd.api+json
Accept: application/vnd.api+json

{
 "data": {
 "type": "person",
 "id": "bd34b544-ad39-11e5-a2aa-4cbb58b9ee34",
 "attributes": {
 "name": "foo"
 }
 }
}

yields the response

HTTP/1.1 201 Created
Location: http://example.com/api/person/bd34b544-ad39-11e5-a2aa-4cbb58b9ee34
Content-Type: application/vnd.api+json

{
 "data": {
 "attributes": {
 "name": "foo"
 },
 "id": "bd34b544-ad39-11e5-a2aa-4cbb58b9ee34",
 "links": {
 "self": "http://example.com/api/person/bd34b544-ad39-11e5-a2aa-4cbb58b9ee34"
 },
 "meta": {},
 "jsonapi": {
 {"version": "1.0"}
 },
 "type": "person"
 }
}

The server always responds with 201 Created [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] and a complete resource
object on a request with a client-generated ID.

The server will respond with 400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] if the request specifies a
field that does not exist on the model.

 Copyright 2012, 2013, 2014, 2015, 2016 Jeffrey Finkelstein and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Flask-Restless 1.0.0b1 documentation

 	Requests and responses

Deleting resources

For the purposes of concreteness in this section, suppose we have executed the
following code on the server:

from flask import Flask
from flask.ext.sqlalchemy import SQLAlchemy
from flask.ext.restless import APIManager

app = Flask(__name__)
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:////tmp/test.db'
db = SQLAlchemy(app)

class Person(db.Model):
 id = db.Column(db.Integer, primary_key=True)

db.create_all()
manager = APIManager(app, flask_sqlalchemy_db=db)
manager.create_api(Person, method=['DELETE'])

To delete a resource, the request

DELETE /api/person/1 HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

yields a 204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] response.

 Copyright 2012, 2013, 2014, 2015, 2016 Jeffrey Finkelstein and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Flask-Restless 1.0.0b1 documentation

 	Requests and responses

Updating resources

For the purposes of concreteness in this section, suppose we have executed the
following code on the server:

from flask import Flask
from flask.ext.sqlalchemy import SQLAlchemy
from flask.ext.restless import APIManager

app = Flask(__name__)
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:////tmp/test.db'
db = SQLAlchemy(app)

class Person(db.Model):
 id = db.Column(db.Integer, primary_key=True)
 name = db.Column(db.Unicode)

class Article(db.Model):
 id = db.Column(db.Integer, primary_key=True)
 author_id = db.Column(db.Integer, db.ForeignKey('person.id'))
 author = db.relationship(Person, backref=db.backref('articles'))

db.create_all()
manager = APIManager(app, flask_sqlalchemy_db=db)
manager.create_api(Person, methods=['PATCH'])
manager.create_api(Article)

To update an existing resource, the request

PATCH /api/person/1 HTTP/1.1
Host: example.com
Content-Type: application/vnd.api+json
Accept: application/vnd.api+json

{
 "data": {
 "type": "person",
 "id": 1,
 "attributes": {
 "name": "foo"
 }
 }
}

yields a 204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] response.

If you set the allow_to_many_replacement keyword argument of
APIManager.create_api() to True, you can replace a to-many
relationship entirely by making a request to update a resource. To update a
to-many relationship, the request

PATCH /api/person/1 HTTP/1.1
Host: example.com
Content-Type: application/vnd.api+json
Accept: application/vnd.api+json

{
 "data": {
 "type": "person",
 "id": 1,
 "relationships": {
 "articles": {
 "data": [
 {
 "id": "1",
 "type": "article"
 },
 {
 "id": "2",
 "type": "article"
 }
]
 }
 }
 }
}

yields a 204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] response.

The server will respond with 400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] if the request specifies a
field that does not exist on the model.

 Copyright 2012, 2013, 2014, 2015, 2016 Jeffrey Finkelstein and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Flask-Restless 1.0.0b1 documentation

 	Requests and responses

Updating relationships

For the purposes of concreteness in this section, suppose we have executed the
following code on the server:

from flask import Flask
from flask.ext.sqlalchemy import SQLAlchemy
from flask.ext.restless import APIManager

app = Flask(__name__)
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:////tmp/test.db'
db = SQLAlchemy(app)

class Person(db.Model):
 id = db.Column(db.Integer, primary_key=True)
 name = db.Column(db.Unicode)

class Article(db.Model):
 id = db.Column(db.Integer, primary_key=True)
 author_id = db.Column(db.Integer, db.ForeignKey('person.id'))
 author = db.relationship(Person, backref=db.backref('articles'))

db.create_all()
manager = APIManager(app, flask_sqlalchemy_db=db)
manager.create_api(Person, methods=['PATCH'])
manager.create_api(Article)

To update a to-one relationship, the request

PATCH /api/articles/1/relationships/author HTTP/1.1
Host: example.com
Content-Type: application/vnd.api+json
Accept: application/vnd.api+json

{
 "data": {
 "type": "person",
 "id": 1
 }
}

yields a 204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] response.

To update a to-many relationship (if enabled by setting
allow_to_many_replacement to True in APIManager.create_api()),
the request

PATCH /api/people/1/relationships/articles HTTP/1.1
Host: example.com
Content-Type: application/vnd.api+json
Accept: application/vnd.api+json

{
 "data": [
 {
 "type": "article",
 "id": 1
 },
 {
 "type": "article",
 "id": 2
 }
]
}

yields a 204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] response.

To add to a to-many relationship, the request

POST /api/person/1/relationships/articles HTTP/1.1
Host: example.com
Content-Type: application/vnd.api+json
Accept: application/vnd.api+json

{
 "data": [
 {
 "type": "article",
 "id": 1
 },
 {
 "type": "article",
 "id": 2
 }
]
}

yields a 204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] response.

To remove from a to-many relationship, the request

DELETE /api/person/1/links/articles HTTP/1.1
Host: example.com
Content-Type: application/vnd.api+json
Accept: application/vnd.api+json

{
 "data": [
 {
 "type": "article",
 "id": 1
 },
 {
 "type": "article",
 "id": 2
 }
]
}

yields a 204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] response.

To remove from a to-many relationship (if enabled by setting
allow_delete_from_to_many_relationships to True in
APIManager.create_api()), the request

DELETE /api/person/1/relationships/articles HTTP/1.1
Host: example.com
Content-Type: application/vnd.api+json
Accept: application/vnd.api+json

{
 "data": [
 {
 "type": "article",
 "id": 1
 },
 {
 "type": "article",
 "id": 2
 }
]
}

yields a 204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] response.

 Copyright 2012, 2013, 2014, 2015, 2016 Jeffrey Finkelstein and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Flask-Restless 1.0.0b1 documentation

Customizing the ReSTful interface

HTTP methods

By default, the APIManager.create_api() method creates a read-only
interface; requests with HTTP methods other than GET [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3] will cause
a response with 405 Method Not Allowed [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.6]. To explicitly specify which methods
should be allowed for the endpoint, pass a list as the value of keyword
argument methods:

apimanager.create_api(Person, methods=['GET', 'POST', 'DELETE'])

This creates an endpoint at /api/person which responds to
GET [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3], POST [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5], and DELETE [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.7] methods, but
not to PATCH [http://tools.ietf.org/html/rfc5789#section-2].

If you allow GET [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3] requests, you will have access to endpoints of
the following forms.

	
GET /api/person

	

	
GET /api/person/1

	

	
GET /api/person/1/comments

	

	
GET /api/person/1/relationships/comments

	

	
GET /api/person/1/comments/2

	

The first four are described explicitly in the JSON API specification. The
last is particular to Flask-Restless; it allows you to access a particular
related resource via a relationship on another resource.

If you allow DELETE [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.7] requests, you will have access to endpoints
of the form

	
DELETE /api/person/1

	

If you allow POST [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5] requests, you will have access to endpoints
of the form

	
POST /api/person

	

Finally, if you allow PATCH [http://tools.ietf.org/html/rfc5789#section-2] requests, you will have access to
endpoints of the following forms.

	
PATCH /api/person/1

	

	
POST /api/person/1/relationships/comments

	

	
PATCH /api/person/1/relationships/comments

	

	
DELETE /api/person/1/relationships/comments

	

The last three allow the client to interact with the relationships of a
particular resource. The last two must be enabled explicitly by setting the
allow_to_many_replacement and allow_delete_from_to_many_relationships,
respectively, to True when creating an API using the
APIManager.create_api() method.

API prefix

To create an API at a prefix other than the default /api, use the
url_prefix keyword argument:

apimanager.create_api(Person, url_prefix='/api/v2')

Then your API for Person will be available at /api/v2/person.

Collection name

By default, the name of the collection that appears in the URLs of the API will
be the name of the table that backs your model. If your model is a SQLAlchemy
model, this will be the value of its __table__.name attribute. If your
model is a Flask-SQLAlchemy model, this will be the lowercase name of the model
with camel case changed to all-lowercase with underscore separators. For
example, a class named MyModel implies a collection name of
'my_model'. Furthermore, the URL at which this collection is accessible by
default is /api/my_model.

To provide a different name for the model, provide a string to the
collection_name keyword argument of the APIManager.create_api()
method:

apimanager.create_api(Person, collection_name='people')

Then the API will be exposed at /api/people instead of /api/person.

Note

According to the JSON API specification [http://jsonapi.org/format/#document-resource-object-identification],

Note: This spec is agnostic about inflection rules, so the value of type
can be either plural or singular. However, the same value should be used
consistently throughout an implementation.

It’s up to you to make sure your collection names are either all plural or
all singular!

Specifying one of many primary keys

If your model has more than one primary key (one called id and one called
username, for example), you should specify the one to use:

manager.create_api(User, primary_key='username')

If you do this, Flask-Restless will create URLs like /api/user/myusername
instead of /api/user/123.

Enable bulk operations

Bulk operations via the JSON API Bulk extension are not yet supported.

Custom serialization

New in version 0.17.0.

Flask-Restless provides serialization and deserialization that work with the
JSON API specification. If you wish to have more control over the way
instances of your models are converted to Python dictionary representations,
you can specify a custom serialization function by providing it to
APIManager.create_api() via the serializer keyword argument.
Similarly, to provide a deserialization function that converts a Python
dictionary representation to an instance of your model, use the
deserializer keyword argument. However, if you provide a serializer that
fails to produce resource objects that satisfy the JSON API specification, your
client will receive non-compliant responses!

Define your serialization functions like this:

def serialize(instance, only=None):
 return {'id': ..., 'type': ..., 'attributes': ...}

instance is an instance of a SQLAlchemy model and the only argument is
a list; only the fields (that is, the attributes and relationships) whose names
appear as strings in only should appear in the returned dictionary. The only
exception is that the keys 'id' and 'type' must always appear,
regardless of whether they appear in only. The function must return a
dictionary representation of the resource object.

To help with creating custom serialization functions, Flask-Restless provides a
simple_serialize() function, which returns the result of its basic,
built-in serialization. Therefore, one way to customize your serialized objects
is to do something like this:

from flask.ext.restless import simple_serialize

def my_serializer(instance, only=None):
 # Get the default serialization of the instance.
 result = simple_serialize(instance, only=only)
 # Make your changes here.
 result['meta']['foo'] = 'bar'
 # Return the dictionary.
 return result

You could also define a subclass of the DefaultSerializer class,
override the DefaultSerializer.__call__() method, and provide an instance
of that class to the serializer keyword argument.

For deserialization, define your custom deserialization function like this:

def deserialize(document):
 return Person(...)

document is a dictionary representation of the complete incoming JSON API
document, where the data element contains the primary resource object. The
function must return an instance of the model that has the requested fields.

Note

If you wish to write your own serialization functions, we strongly
suggest using a Python object serialization library instead of writing
your own serialization functions. This is also likely a better approach than
specifying which columns to include or exclude (Inclusion of related resources) or
preprocessors and postprocessors (Request preprocessors and postprocessors).

For example, if you create schema for your database models using
Marshmallow [https://marshmallow.readthedocs.org], then you use that library’s built-in serialization functions as
follows:

class PersonSchema(Schema):
 id = fields.Integer()
 name = fields.String()

 def make_object(self, data):
 print('MAKING OBJECT FROM', data)
 return Person(**data)

person_schema = PersonSchema()

def person_serializer(instance):
 return person_schema.dump(instance).data

def person_deserializer(data):
 return person_schema.load(data).data

manager = APIManager(app, session=session)
manager.create_api(Person, methods=['GET', 'POST'],
 serializer=person_serializer,
 deserializer=person_deserializer)

For a complete version of this example, see the
examples/server_configurations/custom_serialization.py module in the
source distribution, or view it online [https://github.com/jfinkels/flask-restless/tree/master/examples/server_configurations/custom_serialization.py].

Per-model serialization

The correct serialization function will be used for each type of SQLAlchemy
model for which you invoke APIManager.create_api(). For example, if you
create two APIs, one for Person objects and one for Article objects,

manager.create_api(Person, serializer=person_serializer)
manager.create_api(Article, serializer=article_serializer)

and then make a request like

GET /api/article/1?include=author HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

then Flask-Restless will use the article_serializer function to serialize
the primary data (that is, the top-level data element in the response
document) and the person_serializer to serialize the included Person
resource.

Capturing validation errors

By default, no validation is performed by Flask-Restless; if you want
validation, implement it yourself in your database models. However, by
specifying a list of exceptions raised by your backend on validation errors,
Flask-Restless will forward messages from raised exceptions to the client in an
error response.

For example, if your validation framework includes an exception called
ValidationError, then call the APIManager.create_api() method with
the validation_exceptions keyword argument:

from cool_validation_framework import ValidationError
apimanager.create_api(Person, validation_exceptions=[ValidationError],
 methods=['PATCH', 'POST'])

Note

Currently, Flask-Restless expects that an instance of a specified validation
error will have a errors attribute, which is a dictionary mapping field
name to error description (note: one error per field). If you have a better,
more general solution to this problem, please visit our issue tracker [https://github.com/jfinkels/flask-restless/issues].

Now when you make POST [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5] and PATCH [http://tools.ietf.org/html/rfc5789#section-2] requests with
invalid fields, the JSON response will look like this:

HTTP/1.1 400 Bad Request

{
 "errors": [
 {
 "status": 400,
 "title": "Validation error",
 "detail": "age: must be an integer"
 }
]
}

Request preprocessors and postprocessors

To apply a function to the request parameters and/or body before the request is
processed, use the preprocessors keyword argument. To apply a function to
the response data after the request is processed (immediately before the
response is sent), use the postprocessors keyword argument. Both
preprocessors and postprocessors must be a dictionary which maps HTTP
method names as strings (with exceptions as described below) to a list of
functions. The specified functions will be applied in the order given in the
list.

There are many different routes on which you can apply preprocessors and
postprocessors, depending on HTTP method type, whether the client is accessing
a resource or a relationship, whether the client is accessing a collection or a
single resource, etc.

This table states the preprocessors that apply to each type of endpoint.

	preprocessor name
	applies to URLs like…

	GET_COLLECTION
	/api/person

	GET_RESOURCE
	/api/person/1

	GET_RELATION
	/api/person/1/articles

	GET_RELATED_RESOURCE
	/api/person/1/articles/2

	DELETE_RESOURCE
	/api/person/1

	POST_RESOURCE
	/api/person

	PATCH_RESOURCE
	/api/person/1

	GET_RELATIONSHIP
	/api/person/1/relationships/articles

	DELETE_RELATIONSHIP
	/api/person/1/relationships/articles

	POST_RELATIONSHIP
	/api/person/1/relationships/articles

	PATCH_RELATIONSHIP
	/api/person/1/relationships/articles

This table states the postprocessors that apply to each type of endpoint.

	postprocessor name
	applies to URLs like…

	GET_COLLECTION
	/api/person

	GET_RESOURCE
	/api/person/1

	GET_TO_MANY_RELATION
	/api/person/1/articles

	GET_TO_ONE_RELATION
	/api/articles/1/author

	GET_RELATED_RESOURCE
	/api/person/1/articles/2

	DELETE_RESOURCE
	/api/person/1

	POST_RESOURCE
	/api/person

	PATCH_RESOURCE
	/api/person/1

	GET_TO_MANY_RELATIONSHIP
	/api/person/1/relationships/articles

	GET_TO_ONE_RELATIONSHIP
	/api/articles/1/relationships/author

	GET_RELATIONSHIP
	/api/person/1/relationships/articles

	DELETE_RELATIONSHIP
	/api/person/1/relationships/articles

	POST_RELATIONSHIP
	/api/person/1/relationships/articles

	PATCH_RELATIONSHIP
	/api/person/1/relationships/articles

Each type of preprocessor or postprocessor requires different
arguments. For preprocessors:

	preprocessor name
	keyword arguments

	GET_COLLECTION
	filters, sort, group_by, single

	GET_RESOURCE
	resource_id

	GET_RELATION
	resource_id, relation_name, filters, sort, group_by, single

	GET_RELATED_RESOURCE
	resource_id, relation_name, related_resource_id

	DELETE_RESOURCE
	resource_id

	POST_RESOURCE
	data

	PATCH_RESOURCE
	resource_id, data

	GET_RELATIONSHIP
	resource_id, relation_name

	DELETE_RELATIONSHIP
	resource_id, relation_name

	POST_RELATIONSHIP
	resource_id, relation_name, data

	PATCH_RELATIONSHIP
	resource_id, relation_name, data

For postprocessors:

	postprocessor name
	keyword arguments

	GET_COLLECTION
	result, filters, sort, group_by, single

	GET_RESOURCE
	result

	GET_TO_MANY_RELATION
	result, filters, sort, group_by, single

	GET_TO_ONE_RELATION
	result

	GET_RELATED_RESOURCE
	result

	DELETE_RESOURCE
	was_deleted

	POST_RESOURCE
	result

	PATCH_RESOURCE
	result

	GET_TO_MANY_RELATIONSHIP
	result, filters, sort, group_by, single

	GET_TO_ONE_RELATIONSHIP
	result

	DELETE_RELATIONSHIP
	was_deleted

	POST_RELATIONSHIP
	none

	PATCH_RELATIONSHIP
	none

How can one use these tables to create a preprocessor or postprocessor? If you
want to create a preprocessor that will be applied on GET [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3]
requests to /api/person, first define a function that accepts the keyword
arguments you need, and has a **kw argument for any additional keyword
arguments (and any new arguments that may appear in future versions of
Flask-Restless):

def fetch_preprocessor(filters=None, sort=None, group_by=None, single=None,
 **kw):
 # Here perform any application-specific code...

Next, instruct these preprocessors to be applied by Flask-Restless by using the
preprocessors keyword argument to APIManager.create_api(). The value
of this argument must be a dictionary in which each key is a string containing
a processor name and each value is a list of functions to be applied for that
request:

preprocessors = {'GET_COLLECTION': [fetch_preprocessor]}
manager.create_api(Person, preprocessors=preprocessors)

For preprocessors for endpoints of the form /api/person/1, a returned value
will be interpreted as the resource ID for the request. (Remember, as described
in Resource ID must be a string, the returned ID must be a string.) For example, if a
preprocessor for a GET [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3] request to /api/person/1 returns the
string 'foo', then Flask-Restless will behave as if the request were
originally for the URL /api/person/foo. For preprocessors for endpoints of
the form /api/person/1/articles or
/api/person/1/relationships/articles, the function can return either one
value, in which case the resource ID will be replaced with the return value, or
a two-tuple, in which case both the resource ID and the relationship name will
be replaced. Finally, for preprocessors for endpoints of the form
/api/person/1/articles/2, the function can return one, two, or three
values; if three values are returned, the resource ID, the relationship name,
and the related resource ID are all replaced. (If multiple preprocessors are
specified for a single HTTP method and each one has a return value,
Flask-Restless will only remember the value returned by the last preprocessor
function.)

Those preprocessors and postprocessors that accept dictionaries as parameters
can (and should) modify their arguments in-place. That means the changes made
to, for example, the result dictionary will be seen by the Flask-Restless
view functions and ultimately returned to the client.

Note

For more information about the filters and single keyword arguments,
see Filtering. For more information about sort and group_by
keyword arguments, see Sorting.

In order to halt the preprocessing or postprocessing and return an error
response directly to the client, your preprocessor or postprocessor functions
can raise a ProcessingException. If a function raises this exception, no
preprocessing or postprocessing functions that appear later in the list
specified when the API was created will be invoked. For example, an
authentication function can be implemented like this:

def check_auth(resource_id=None, **kw):
 # Here, get the current user from the session.
 current_user = ...
 # Next, check if the user is authorized to modify the specified
 # instance of the model.
 if not is_authorized_to_modify(current_user, instance_id):
 raise ProcessingException(detail='Not Authorized', status=401)
manager.create_api(Person, preprocessors=dict(GET_SINGLE=[check_auth]))

The ProcessingException allows you to specify as keyword arguments to
the constructor the elements of the JSON API error object [https://jsonapi.org/format/#error-objects]. If no arguments
are provided, the error is assumed to have status code 400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1].

Universal preprocessors and postprocessors

New in version 0.13.0.

The previous section describes how to specify a preprocessor or postprocessor
on a per-API (that is, a per-model) basis. If you want a function to be
executed for all APIs created by a APIManager, you can use the
preprocessors or postprocessors keyword arguments in the constructor of
the APIManager class. These keyword arguments have the same format as
the corresponding ones in the APIManager.create_api() method as described
above. Functions specified in this way are prepended to the list of
preprocessors or postprocessors specified in the APIManager.create_api()
method.

This may be used, for example, if all POST [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5] requests require
authentication:

from flask import Flask
from flask.ext.restless import APIManager
from flask.ext.restless import ProcessingException
from flask.ext.login import current_user
from mymodels import User
from mymodels import session

def auth_func(*args, **kw):
 if not current_user.is_authenticated():
 raise ProcessingException(detail='Not authenticated', status=401)

app = Flask(__name__)
preprocessors = {'POST_RESOURCE': [auth_func]}
api_manager = APIManager(app, session=session, preprocessors=preprocessors)
api_manager.create_api(User)

Preprocessors for collections

When the server receives, for example, a GET [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3] request for
/api/person, Flask-Restless interprets this request as a search with no
filters (that is, a search for all instances of Person without
exception). In other words, a GET [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3] request to /api/person is
roughly equivalent to the same request to
/api/person?filter[objects]=[]. Therefore, if you want to filter the set of
Person instances returned by such a request, you can create a
GET_COLLECTION preprocessor that appends filters to the filters
keyword argument. For example:

def preprocessor(filters=None, **kw):
 # This checks if the preprocessor function is being called before a
 # request that does not have search parameters.
 if filters is None:
 return
 # Create the filter you wish to add; in this case, we include only
 # instances with ``id`` not equal to 1.
 filt = dict(name='id', op='neq', val=1)
 # *Append* your filter to the list of filters.
 filters.append(filt)

preprocessors = {'GET_COLLECTION': [preprocessor]}
manager.create_api(Person, preprocessors=preprocessors)

Custom queries

In cases where it is not possible to use preprocessors or postprocessors
(Request preprocessors and postprocessors) efficiently, you can provide a custom query attribute
to your model instead. The attribute can either be a SQLAlchemy query
expression or a class method that returns a SQLAlchemy query
expression. Flask-Restless will use this query attribute internally,
however it is defined, instead of the default session.query(Model) (in the
pure SQLAlchemy case) or Model.query (in the Flask-SQLAlchemy
case). Flask-Restless uses a query during most GET [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3] and
PATCH [http://tools.ietf.org/html/rfc5789#section-2] requests to find the model(s) being requested.

You may want to use a custom query attribute if you want to reveal only certain
information to the client. For example, if you have a set of people and you
only want to reveal information about people from the group named “students”,
define a query class method this way:

class Group(Base):
 __tablename__ = 'group'
 id = Column(Integer, primary_key=True)
 groupname = Column(Unicode)
 people = relationship('Person')

class Person(Base):
 __tablename__ = 'person'
 id = Column(Integer, primary_key=True)
 group_id = Column(Integer, ForeignKey('group.id'))
 group = relationship('Group')

 @classmethod
 def query(cls):
 original_query = session.query(cls)
 condition = (Group.groupname == 'students')
 return original_query.join(Group).filter(condition)

Then GET [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3] requests to, for example, /api/person will only
reveal instances of Person who also are in the group named “students”.

Requiring authentication for some methods

If you want certain HTTP methods to require authentication, use preprocessors:

from flask import Flask
from flask.ext.restless import APIManager
from flask.ext.restless import ProcessingException
from flask.ext.login import current_user
from mymodels import User

def auth_func(*args, **kwargs):
 if not current_user.is_authenticated():
 raise ProcessingException(detail='Not authenticated', status=401)

app = Flask(__name__)
api_manager = APIManager(app)
Set `auth_func` to be a preprocessor for any type of endpoint you want to
be guarded by authentication.
preprocessors = {'GET_RESOURCE': [auth_func], ...}
api_manager.create_api(User, preprocessors=preprocessors)

For a more complete example using Flask-Login [https://packages.python.org/Flask-Login], see the
examples/server_configurations/authentication directory in the source
distribution, or view the authentication example online [https://github.com/jfinkels/flask-restless/tree/master/examples/server_configurations/authentication].

 Copyright 2012, 2013, 2014, 2015, 2016 Jeffrey Finkelstein and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Flask-Restless 1.0.0b1 documentation

API

This part of the documentation documents all the public classes and functions
in Flask-Restless.

The API Manager class

	
class flask.ext.restless.APIManager(app=None, session=None, flask_sqlalchemy_db=None, preprocessors=None, postprocessors=None, url_prefix=None)

	Provides a method for creating a public ReSTful JSON API with respect
to a given Flask [http://flask.pocoo.org/docs/api/#flask.Flask] application object.

The Flask [http://flask.pocoo.org/docs/api/#flask.Flask] object can either be specified in the
constructor, or after instantiation time by calling the
init_app() method.

app is the Flask [http://flask.pocoo.org/docs/api/#flask.Flask] object containing the user’s
Flask application.

session is the Session [http://sqlalchemy.org/docs/orm/session_api.html#sqlalchemy.orm.session.Session] object in
which changes to the database will be made.

flask_sqlalchemy_db is the SQLAlchemy
object with which app has been registered and which contains the
database models for which API endpoints will be created.

If flask_sqlalchemy_db is not None, session will be ignored.

For example, to use this class with models defined in pure SQLAlchemy:

from flask import Flask
from flask.ext.restless import APIManager
from sqlalchemy import create_engine
from sqlalchemy.orm.session import sessionmaker

engine = create_engine('sqlite:////tmp/mydb.sqlite')
Session = sessionmaker(bind=engine)
mysession = Session()
app = Flask(__name__)
apimanager = APIManager(app, session=mysession)

and with models defined with Flask-SQLAlchemy:

from flask import Flask
from flask.ext.restless import APIManager
from flask.ext.sqlalchemy import SQLAlchemy

app = Flask(__name__)
db = SQLALchemy(app)
apimanager = APIManager(app, flask_sqlalchemy_db=db)

url_prefix is the URL prefix at which each API created by this
instance will be accessible. For example, if this is set to
'foo', then this method creates endpoints of the form
/foo/<collection_name> when create_api() is called. If the
url_prefix is set in the create_api(), the URL prefix set in
the constructor will be ignored for that endpoint.

postprocessors and preprocessors must be dictionaries as
described in the section Request preprocessors and postprocessors. These preprocessors and
postprocessors will be applied to all requests to and responses from
APIs created using this APIManager object. The preprocessors and
postprocessors given in these keyword arguments will be prepended to
the list of processors given for each individual model when using
the create_api_blueprint() method (more specifically, the
functions listed here will be executed before any functions
specified in the create_api_blueprint() method). For more
information on using preprocessors and postprocessors, see
Request preprocessors and postprocessors.

	
init_app(app)

	Registers any created APIs on the given Flask application.

This function should only be called if no Flask application was
provided in the app keyword argument to the constructor of
this class.

When this function is invoked, any blueprint created by a
previous invocation of create_api() will be registered on
app by calling the register_blueprint() [http://flask.pocoo.org/docs/api/#flask.Flask.register_blueprint]
method.

To use this method with pure SQLAlchemy, for example:

from flask import Flask
from flask.ext.restless import APIManager
from sqlalchemy import create_engine
from sqlalchemy.orm.session import sessionmaker

engine = create_engine('sqlite:////tmp/mydb.sqlite')
Session = sessionmaker(bind=engine)
mysession = Session()

Here create model classes, for example User, Comment, etc.
...

Create the API manager and create the APIs.
apimanager = APIManager(session=mysession)
apimanager.create_api(User)
apimanager.create_api(Comment)

Later, call `init_app` to register the blueprints for the
APIs created earlier.
app = Flask(__name__)
apimanager.init_app(app)

and with models defined with Flask-SQLAlchemy:

from flask import Flask
from flask.ext.restless import APIManager
from flask.ext.sqlalchemy import SQLAlchemy

db = SQLALchemy(app)

Here create model classes, for example User, Comment, etc.
...

Create the API manager and create the APIs.
apimanager = APIManager(flask_sqlalchemy_db=db)
apimanager.create_api(User)
apimanager.create_api(Comment)

Later, call `init_app` to register the blueprints for the
APIs created earlier.
app = Flask(__name__)
apimanager.init_app(app)

	
create_api(*args, **kw)

	Creates and possibly registers a ReSTful API blueprint for
the given SQLAlchemy model.

If a Flask application was provided in the constructor of this
class, the created blueprint is immediately registered on that
application. Otherwise, the blueprint is stored for later
registration when the init_app() method is invoked. In
that case, the blueprint will be registered each time the
init_app() method is invoked.

The keyword arguments for this method are exactly the same as
those for create_api_blueprint(), and are passed directly
to that method. However, unlike that method, this method accepts
only a single positional argument, model, the SQLAlchemy model
for which to create the API. A UUID will be automatically
generated for the blueprint name.

For example, if you only wish to create APIs on a single Flask
application:

app = Flask(__name__)
session = ... # create the SQLAlchemy session
manager = APIManager(app=app, session=session)
manager.create_api(User)

If you want to create APIs before having access to a Flask
application, you can call this method before calling
init_app():

session = ... # create the SQLAlchemy session
manager = APIManager(session=session)
manager.create_api(User)

later...
app = Flask(__name__)
manager.init_app(app)

If you want to create an API and register it on multiple Flask
applications, you can call this method once and init_app()
multiple times with different app arguments:

session = ... # create the SQLAlchemy session
manager = APIManager(session=session)
manager.create_api(User)

later...
app1 = Flask('application1')
app2 = Flask('application2')
manager.init_app(app1)
manager.init_app(app2)

	
create_api_blueprint(name, model, methods=frozenset({'GET'}), url_prefix=None, collection_name=None, allow_functions=False, only=None, exclude=None, additional_attributes=None, validation_exceptions=None, page_size=10, max_page_size=100, preprocessors=None, postprocessors=None, primary_key=None, serializer=None, deserializer=None, includes=None, allow_to_many_replacement=False, allow_delete_from_to_many_relationships=False, allow_client_generated_ids=False)

	Creates and returns a ReSTful API interface as a blueprint, but does
not register it on any flask.Flask [http://flask.pocoo.org/docs/api/#flask.Flask] application.

The endpoints for the API for model will be available at
<url_prefix>/<collection_name>. If collection_name is
None, the lowercase name of the provided model class will be
used instead, as accessed by model.__table__.name. (If any
black magic was performed on model.__table__, this will be
reflected in the endpoint URL.) For more information, see
Collection name.

This function must be called at most once for each model for which you
wish to create a ReSTful API. Its behavior (for now) is undefined if
called more than once.

This function returns the flask.Blueprint [http://flask.pocoo.org/docs/api/#flask.Blueprint] object that handles
the endpoints for the model. The returned Blueprint [http://flask.pocoo.org/docs/api/#flask.Blueprint] has
not been registered with the Flask [http://flask.pocoo.org/docs/api/#flask.Flask] application
object specified in the constructor of this class, so you will need
to register it yourself to make it available on the application. If you
don’t need access to the Blueprint [http://flask.pocoo.org/docs/api/#flask.Blueprint] object, use
create_api_blueprint() instead, which handles registration
automatically.

name is the name of the blueprint that will be created.

model is the SQLAlchemy model class for which a ReSTful interface
will be created.

app is the Flask object on which we expect the blueprint
created in this method to be eventually registered. If not specified,
the Flask application specified in the constructor of this class is
used.

methods is a list of strings specifying the HTTP methods that
will be made available on the ReSTful API for the specified
model.

	If 'GET' is in the list, GET [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3] requests will
be allowed at endpoints for collections of resources,
resources, to-many and to-one relations of resources, and
particular members of a to-many relation. Furthermore,
relationship information will be accessible. For more
information, see Fetching resources and relationships.

	If 'POST' is in the list, POST [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5] requests
will be allowed at endpoints for collections of resources. For
more information, see Creating resources.

	If 'DELETE' is in the list, DELETE [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.7] requests
will be allowed at endpoints for individual resources. For
more information, see Deleting resources.

	If 'PATCH' is in the list, PATCH [http://tools.ietf.org/html/rfc5789#section-2] requests
will be allowed at endpoints for individual
resources. Replacing a to-many relationship when issuing a
request to update a resource can be enabled by setting
allow_to_many_replacement to True.

Furthermore, to-one relationships can be updated at
the relationship endpoints under an individual resource via
PATCH [http://tools.ietf.org/html/rfc5789#section-2] requests. This also allows you to add to
a to-many relationship via the POST [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5] method,
delete from a to-many relationship via the
DELETE [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.7] method (if
allow_delete_from_to_many_relationships is set to
True), and replace a to-many relationship via the
PATCH [http://tools.ietf.org/html/rfc5789#section-2] method (if allow_to_many_replacement
is set to True). For more information, see Updating resources
and Updating relationships.

The default set of methods provides a read-only interface (that is,
only GET [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3] requests are allowed).

url_prefix is the URL prefix at which this API will be
accessible. For example, if this is set to '/foo', then this
method creates endpoints of the form
/foo/<collection_name>. If not set, the default URL prefix
specified in the constructor of this class will be used. If that
was not set either, the default '/api' will be used.

collection_name is the name of the collection specified by the
given model class to be used in the URL for the ReSTful API
created. If this is not specified, the lowercase name of the
model will be used. For example, if this is set to 'foo',
then this method creates endpoints of the form /api/foo,
/api/foo/<id>, etc.

If allow_functions is True, then GET [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3]
requests to /api/eval/<collection_name> will return the
result of evaluating SQL functions specified in the body of the
request. For information on the request format, see
Function evaluation. This is False by default.

Warning

If allow_functions is True, you must not create an
API for a model whose name is 'eval'.

If only is not None, it must be a list of columns and/or
relationships of the specified model, given either as strings or as
the attributes themselves. If it is a list, only these fields will
appear in the resource object representation of an instance of model.
In other words, only is a whitelist of fields. The id and
type elements of the resource object will always be present
regardless of the value of this argument. If only contains a string
that does not name a column in model, it will be ignored.

If additional_attributes is a list of strings, these
attributes of the model will appear in the JSON representation
of an instance of the model. This is useful if your model has an
attribute that is not a SQLAlchemy column but you want it to be
exposed. If any of the attributes does not exist on the model, a
AttributeError is raised.

If exclude is not None, it must be a list of columns and/or
relationships of the specified model, given either as strings or as
the attributes themselves. If it is a list, all fields except these
will appear in the resource object representation of an instance of
model. In other words, exclude is a blacklist of fields. The id
and type elements of the resource object will always be present
regardless of the value of this argument. If exclude contains a
string that does not name a column in model, it will be ignored.

If either only or exclude is not None, exactly one of them must
be specified; if both are not None, then this function will raise a
IllegalArgumentError.

See Specifying which fields appear in responses for more information on specifying which fields will
be included in the resource object representation.

validation_exceptions is the tuple of possible exceptions raised by
validation of your database models. If this is specified, validation
errors will be captured and forwarded to the client in the format
described by the JSON API specification. For more information on how to
use validation, see Capturing validation errors.

page_size must be a positive integer that represents the default page
size for responses that consist of a collection of resources. Requests
made by clients may override this default by specifying page_size
as a query parameter. max_page_size must be a positive integer that
represents the maximum page size that a client can request. Even if a
client specifies that greater than max_page_size should be returned,
at most max_page_size results will be returned. For more information,
see Pagination.

serializer and deserializer are custom serialization
functions. The former function must take a single positional
argument representing the instance of the model to serialize and
an additional keyword argument only representing the fields
to include in the serialized representation of the instance, and
must return a dictionary representation of that instance. The
latter function must take a single argument representing the
dictionary representation of an instance of the model and must
return an instance of model that has those attributes. For
more information, see Custom serialization.

preprocessors is a dictionary mapping strings to lists of
functions. Each key represents a type of endpoint (for example,
'GET_RESOURCE' or 'GET_COLLECTION'). Each value is a list of
functions, each of which will be called before any other code is
executed when this API receives the corresponding HTTP request. The
functions will be called in the order given here. The postprocessors
keyword argument is essentially the same, except the given functions
are called after all other code. For more information on preprocessors
and postprocessors, see Request preprocessors and postprocessors.

primary_key is a string specifying the name of the column of model
to use as the primary key for the purposes of creating URLs. If the
model has exactly one primary key, there is no need to provide a
value for this. If model has two or more primary keys, you must
specify which one to use. For more information, see Specifying one of many primary keys.

includes must be a list of strings specifying which related resources
will be included in a compound document by default when fetching a
resource object representation of an instance of model. Each element
of includes is the name of a field of model (that is, either an
attribute or a relationship). For more information, see
Inclusion of related resources.

If allow_to_many_replacement is True and this API allows
PATCH [http://tools.ietf.org/html/rfc5789#section-2] requests, the server will allow two types
of requests. First, it allows the client to replace the entire
collection of resources in a to-many relationship when updating
an individual instance of the model. Second, it allows the
client to replace the entire to-many relationship when making a
PATCH [http://tools.ietf.org/html/rfc5789#section-2] request to a to-many relationship endpoint.
This is False by default. For more information, see
Updating resources and Updating relationships.

If allow_delete_from_to_many_relationships is True and
this API allows PATCH [http://tools.ietf.org/html/rfc5789#section-2] requests, the server will
allow the client to delete resources from any to-many
relationship of the model. This is False by default. For
more information, see Updating relationships.

If allow_client_generated_ids is True and this API allows
POST [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5] requests, the server will allow the client to
specify the ID for the resource to create. JSON API recommends that
this be a UUID. This is False by default. For more information, see
Creating resources.

Global helper functions

	
flask.ext.restless.collection_name(model, _apimanager=None)

	Returns the collection name for the specified model, as specified by the
collection_name keyword argument to APIManager.create_api() when
it was previously invoked on the model.

model is a SQLAlchemy model class. This should be a model on which
APIManager.create_api_blueprint() (or APIManager.create_api())
has been invoked previously. If no API has been created for it, this
function raises a ValueError.

If _apimanager is not None, it must be an instance of
APIManager. Restrict our search for endpoints exposing model to
only endpoints created by the specified APIManager instance.

For example, suppose you have a model class Person and have created the
appropriate Flask application and SQLAlchemy session:

>>> from mymodels import Person
>>> manager = APIManager(app, session=session)
>>> manager.create_api(Person, collection_name='people')
>>> collection_name(Person)
'people'

This function is the inverse of model_for():

>>> manager.collection_name(manager.model_for('people'))
'people'
>>> manager.model_for(manager.collection_name(Person))
<class 'mymodels.Person'>

	
flask.ext.restless.model_for(collection_name, _apimanager=None)

	Returns the model corresponding to the given collection name, as specified
by the collection_name keyword argument to APIManager.create_api()
when it was previously invoked on the model.

collection_name is a string corresponding to the “type” of a model. This
should be a model on which APIManager.create_api_blueprint() (or
APIManager.create_api()) has been invoked previously. If no API has
been created for it, this function raises a ValueError.

If _apimanager is not None, it must be an instance of
APIManager. Restrict our search for endpoints exposing model to
only endpoints created by the specified APIManager instance.

For example, suppose you have a model class Person and have created the
appropriate Flask application and SQLAlchemy session:

>>> from mymodels import Person
>>> manager = APIManager(app, session=session)
>>> manager.create_api(Person, collection_name='people')
>>> model_for('people')
<class 'mymodels.Person'>

This function is the inverse of collection_name():

>>> manager.collection_name(manager.model_for('people'))
'people'
>>> manager.model_for(manager.collection_name(Person))
<class 'mymodels.Person'>

	
flask.ext.restless.serializer_for(model, _apimanager=None)

	Returns the callable serializer object for the specified model, as
specified by the serializer keyword argument to
APIManager.create_api() when it was previously invoked on the
model.

model is a SQLAlchemy model class. This should be a model on which
APIManager.create_api_blueprint() (or APIManager.create_api())
has been invoked previously. If no API has been created for it, this
function raises a ValueError.

If _apimanager is not None, it must be an instance of
APIManager. Restrict our search for endpoints exposing
model to only endpoints created by the specified
APIManager instance.

For example, suppose you have a model class Person and have
created the appropriate Flask application and SQLAlchemy session:

>>> from mymodels import Person
>>> def my_serializer(model, *args, **kw):
... # return something cool here...
... return {}
...
>>> manager = APIManager(app, session=session)
>>> manager.create_api(Person, serializer=my_serializer)
>>> serializer_for(Person)
<function my_serializer at 0x...>

	
flask.ext.restless.primary_key_for(model, _apimanager=None)

	Returns the primary key to be used for the given model or model instance,
as specified by the primary_key keyword argument to
APIManager.create_api() when it was previously invoked on the model.

primary_key is a string corresponding to the primary key identifier
to be used by flask-restless for a model. If no primary key has been set
at the flask-restless level (by using the primary_key keyword argument
when calling APIManager.create_api_blueprint(), the model’s primary
key will be returned. If no API has been created for the model, this
function raises a ValueError.

If _apimanager is not None, it must be an instance of
APIManager. Restrict our search for endpoints exposing model to
only endpoints created by the specified APIManager instance.

For example, suppose you have a model class Person and have created the
appropriate Flask application and SQLAlchemy session:

>>> from mymodels import Person
>>> manager = APIManager(app, session=session)
>>> manager.create_api(Person, primary_key='name')
>>> primary_key_for(Person)
'name'
>>> my_person = Person(name="Bob")
>>> primary_key_for(my_person)
'name'

This is in contrast to the typical default:

>>> manager = APIManager(app, session=session)
>>> manager.create_api(Person)
>>> primary_key_for(Person)
'id'

	
flask.ext.restless.url_for(model, instid=None, relationname=None, relationinstid=None, _apimanager=None, **kw)

	Returns the URL for the specified model, similar to flask.url_for() [http://flask.pocoo.org/docs/api/#flask.url_for].

model is a SQLAlchemy model class. This should be a model on which
APIManager.create_api_blueprint() (or APIManager.create_api())
has been invoked previously. If no API has been created for it, this
function raises a ValueError.

If _apimanager is not None, it must be an instance of
APIManager. Restrict our search for endpoints exposing model to
only endpoints created by the specified APIManager instance.

The resource_id, relation_name, and relationresource_id keyword
arguments allow you to get the URL for a more specific sub-resource.

For example, suppose you have a model class Person and have created the
appropriate Flask application and SQLAlchemy session:

>>> manager = APIManager(app, session=session)
>>> manager.create_api(Person, collection_name='people')
>>> url_for(Person, resource_id=3)
'http://example.com/api/people/3'
>>> url_for(Person, resource_id=3, relation_name=computers)
'http://example.com/api/people/3/computers'
>>> url_for(Person, resource_id=3, relation_name=computers, related_resource_id=9)
'http://example.com/api/people/3/computers/9'

If a resource_id and a relation_name are provided, and you wish
to determine the relationship endpoint URL instead of the related
resource URL, set the relationship keyword argument to True:

>>> url_for(Person, resource_id=3, relation_name=computers, relationshi=True)
'http://example.com/api/people/3/relatonships/computers'

The remaining keyword arguments, kw, are passed directly on to
flask.url_for() [http://flask.pocoo.org/docs/api/#flask.url_for].

Since this function creates absolute URLs to resources linked to the given
instance, it must be called within a Flask request context [http://flask.pocoo.org/docs/0.10/reqcontext/].

Serialization helpers

	
flask.ext.restless.simple_serialize(instance, only=None)

	Provides basic, uncustomized serialization functionality as provided by
DefaultSerializer.

This function is suitable for calling on its own, no other instantiation or
customization necessary.

	
class flask.ext.restless.Serializer

	An object that, when called, returns a dictionary representation of a
given instance of a SQLAlchemy model.

This is a base class with no implementation.

	
class flask.ext.restless.Deserializer(session, model)

	An object that, when called, returns an instance of the SQLAlchemy model
specified at instantiation time.

session is the SQLAlchemy session in which to look for any related
resources.

model is the class of which instances will be created by the
__call__() method.

This is a base class with no implementation.

	
class flask.ext.restless.SerializationException(instance, message=None, resource=None, *args, **kw)

	Raised when there is a problem serializing an instance of a
SQLAlchemy model to a dictionary representation.

instance is the (problematic) instance on which
Serializer.__call__() was invoked.

message is an optional string describing the problem in more
detail.

resource is an optional partially-constructed serialized
representation of instance.

Each of these keyword arguments is stored in a corresponding
instance attribute so client code can access them.

	
class flask.ext.restless.DeserializationException(*args, **kw)

	Raised when there is a problem deserializing a Python dictionary to an
instance of a SQLAlchemy model.

Subclasses that wish to provide more detailed about the problem
should set the detail attribute to be a string, either as a
class-level attribute or as an instance attribute.

Pre- and postprocessor helpers

	
class flask.ext.restless.ProcessingException(id_=None, links=None, status=400, code=None, title=None, detail=None, source=None, meta=None, *args, **kw)

	Raised when a preprocessor or postprocessor encounters a problem.

This exception should be raised by functions supplied in the
preprocessors and postprocessors keyword arguments to
APIManager.create_api. When this exception is raised, all
preprocessing or postprocessing halts, so any processors appearing
later in the list will not be invoked.

The keyword arguments id_, href status, code,
title, detail, links, paths correspond to the
elements of the JSON API error object; the values of these keyword
arguments will appear in the error object returned to the client.

Any additional positional or keyword arguments are supplied directly
to the superclass, werkzeug.exceptions.HTTPException.

 Copyright 2012, 2013, 2014, 2015, 2016 Jeffrey Finkelstein and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Flask-Restless 1.0.0b1 documentation

Similar projects

If Flask-Restless doesn’t work for you, here are some similar Python packages
that intend to simplify the creation of ReSTful APIs (in various combinations
of Web frameworks and database backends):

	Eve [http://python-eve.org]

	Flask-Peewee [https://flask-peewee.readthedocs.org]

	Flask-RESTful [https://flask-restful.readthedocs.org]

	simpleapi [https://simpleapi.readthedocs.org]

	Tastypie [https://django-tastypie.readthedocs.org]

	Django REST framework [http://www.django-rest-framework.org]

	Restless [https://restless.readthedocs.org]

 Copyright 2012, 2013, 2014, 2015, 2016 Jeffrey Finkelstein and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Flask-Restless 1.0.0b1 documentation

Copyright and license

Flask-Restless is copyright 2011 Lincoln de Sousa and copyright 2012, 2013,
2014, 2015, 2016 Jeffrey Finkelstein and contributors, and is dual-licensed
under the following two copyright licenses:

	the GNU Affero General Public License [http://fsf.org/licenses/agpl.html],
either version 3 or (at your option) any later version

	the 3-clause BSD License

For more information, see the files LICENSE.AGPL and
LICENSE.BSD in top-level directory of the source distribution.

The artwork for Flask-Restless is copyright 2012 Jeffrey Finkelstein. The couch
logo is licensed under the Creative Commons Attribute-ShareAlike 4.0 license [http://creativecommons.org/licenses/by-sa/4.0]. The original image is a
scan of a (now public domain) illustration by Arthur Hopkins in a serial
edition of “The Return of the Native” by Thomas Hardy published in October
1878. The couch logo with the “Flask-Restless” text is licensed under the
Flask Artwork License [http://flask.pocoo.org/docs/license/#flask-artwork-license].

The documentation is licensed under the Creative Commons Attribute-ShareAlike
4.0 license [http://creativecommons.org/licenses/by-sa/4.0].

 Copyright 2012, 2013, 2014, 2015, 2016 Jeffrey Finkelstein and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 previous |

 	Flask-Restless 1.0.0b1 documentation

Changelog

Here you can see the full list of changes between each Flask-Restless release.
Version 1.0.0 saw a major overhaul of Flask-Restless to make it compliant with
JSON API, so changes from prior versions may not be relevant to more recent
versions.

Numbers following a pound sign (#) refer to GitHub issues [https://github.com/jfinkels/flask-restless/issues].

Version 1.0.0b1

This is a beta release; these changes will appear in the 1.0.0 release.

Released on April 2, 2016.

	#255: adds support for filtering by PostgreSQL network operators.

	#257: ensures additional attributes specified by the user actually exist on
the model.

	#363 (partial solution): don’t use COUNT on requests that don’t require
pagination.

	#404: Major overhaul of Flask-Restless to support JSON API.

	Increases minimum version requirement for python-dateutil to be strictly
greater than 2.2 to avoid parsing bug.

	#331, #415: documents the importance of URL encoding when using the like
operator to filter results.

	#376: add a not_like operator for filter objects.

	#431: adds a url_prefix keyword argument to the APIManager
constructor, so one can specify a URL prefix once for all created APIs.

	#449: roll back the session on any SQLAlchemy error, not just a few.

	#432, #462: alias relation names when sorting by multiple attributes on a
relationship.

	#436, #453: use __table__.name instead of __tablename__ to infer the
collection name for the SQLAlchemy model.

	#440, #475: uses the serialization function provided at the time of invoking
APIManager.create_api() to serialize each resource correctly, depending
on its type.

	#474: include license files in built wheel for distribution.

	#501: allows empty string for url_prefix keyword argument to
APIManager.create_api().

	#476: use the primary key provided at the time of invoking
APIManager.create_api() to build resource urls in responses.

Older versions

Note

As of version 0.13.0, Flask-Restless supports Python 2.6, 2.7, and 3. Before
that, it supported Python 2.5, 2.6, and 2.7.

Note

As of version 0.6, Flask-Restless supports both pure SQLAlchemy and
Flask-SQLAlchemy models. Before that, it supported only Elixir models.

Version 0.17.0

Released on February 17, 2015.

	Corrects bug to allow delayed initialization of multiple Flask applications.

	#167: allows custom serialization/deserialization functions.

	#198: allows arbitrary Boolean expressions in search query filters.

	#226: allows creating APIs before initializing the Flask application object.

	#274: adds the url_for() function for computing URLs from models.

	#379: improves datetime parsing in search requests.

	#398: fixes bug where DELETE_SINGLE processors were not actually used.

	#400: disallows excluding a primary key on a POST [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5] request.

Version 0.16.0

Released on February 3, 2015.

	#237: allows bulk delete of model instances via the allow_delete_many
keyword argument.

	#313, #389: APIManager.init_app() now can be correctly used to
initialize multiple Flask applications.

	#327, #391: allows ordering searches by fields on related instances.

	#353: allows search queries to specify group_by directives.

	#365: allows preprocessors to specify return values on GET [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3]
requests.

	#385: makes the include_methods keywords argument respect model properties.

Version 0.15.1

Released on January 2, 2015.

	#367: catch IntegrityError, DataError, and
ProgrammingError exceptions in all view methods.

	#374: import sqlalchemy.Column from sqlalchemy directly,
instead of sqlalchemy.sql.schema

Version 0.15.0

Released on October 30, 2014.

	#320: detect settable hybrid properties instead of raising an exception.

	#350: allows exclude/include columns to be specified as SQLAlchemy column
objects in addition to strings.

	#356: rollback the SQLAlchemy session on a failed PATCH [http://tools.ietf.org/html/rfc5789#section-2]
request.

	#368: adds missing documentation on using custom queries (see
Custom queries)

Version 0.14.2

Released on September 2, 2014.

	#351, #355: fixes bug in getting related models from a model with hybrid
properties.

Version 0.14.1

Released on August 26, 2014.

	#210: lists some related projects in the documentation.

	#347: adds automated build testing for PyPy 3.

	#354: renames is_deleted to was_deleted when providing keyword
arguments to postprocessor for DELETE [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.7] method in order to match
documentation.

Version 0.14.0

Released on August 12, 2014.

	Fixes bug where primary key specified by user was not being checked in some
POST [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5] requests and some search queries.

	#223: documents CORS example.

	#280: don’t expose raw SQL in responses on database errors.

	#299: show error message if search query tests for NULL using comparison
operators.

	#315: check for query object being None.

	#324: DELETE [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.7] should only return 204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] if
something is actuall deleted.

	#325: support null inside has search operators.

	#328: enable automatic testing for Python 3.4.

	#333: enforce limit in helpers.count().

	#338: catch validation exceptions when attempting to update relations.

	#339: use user-specified primary key on PATCH [http://tools.ietf.org/html/rfc5789#section-2] requests.

	#344: correctly encodes Unicode fields in responses.

Version 0.13.1

Released on April 21, 2014.

	#304: fixes mimerender bug due to how Python 3.4 handles decorators.

Version 0.13.0

Released on April 6, 2014.

	Allows universal preprocessors or postprocessors; see Universal preprocessors and postprocessors.

	Allows specifying which primary key to use when creating endpoint URLs.

	Requires SQLAlchemy version 0.8 or greater.

	#17: use Flask’s flask.Request.json [http://flask.pocoo.org/docs/api/#flask.Request.json] to parse incoming JSON requests.

	#29: replace custom jsonify_status_code function with built-in support
for return jsonify(), status_code style return statements (new in Flask
0.9).

	#51: Use mimerender [http://mimerender.readthedocs.org] to render
dictionaries to JSON format.

	#247: adds support for making POST [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5] requests to dictionary-like
association proxies.

	#249: returns 404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] if a search reveals no matching results.

	#254: returns 404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] if no related field exists for a request
with a related field in the URL.

	#256: makes search parameters available to postprocessors for
GET [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3] and PATCH [http://tools.ietf.org/html/rfc5789#section-2] requests that access multiple
resources.

	#263: Adds Python 3.3 support; drops Python 2.5 support.

	#267: Adds compatibility for legacy Microsoft Internet Explorer versions 8
and 9.

	#270: allows the query attribute on models to be a callable.

	#282: order responses by primary key if no order is specified.

	#284: catch DataError and ProgrammingError exceptions when bad data
are sent to the server.

	#286: speed up paginated responses by using optimized count() function.

	#293: allows sqlalchemy.Time fields in JSON responses.

Version 0.12.1

Released on December 1, 2013.

	#222: on POST [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5] and PATCH [http://tools.ietf.org/html/rfc5789#section-2] requests, recurse into
nested relations to get or create instances of related models.

	#246: adds pysqlite [https://pypi.python.org/pypi/pysqlite] to test
requirements.

	#260: return a single object when making a GET [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3] request to a
relation sub-URL.

	#264: all methods now execute postprocessors after setting headers.

	#265: convert strings to dates in related models when making
POST [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5] requests.

Version 0.12.0

Released on August 8, 2013.

	#188: provides metadata as well as normal data in JSONP responses.

	#193: allows DELETE [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.7] requests to related instances.

	#215: removes Python 2.5 tests from Travis configuration.

	#216: don’t resolve Query objects until pagination function.

	#217: adds missing indices in format string.

	#220: fix bug when checking attributes on a hybrid property.

	#227: allows client to request that the server use the current date and/or
time when setting the value of a field.

	#228 (as well as #212, #218, #231): fixes issue due to a module removed from
Flask version 0.10.

Version 0.11.0

Released on May 18, 2013.

	Requests that require a body but don’t have Content-Type:
application/json will cause a 415 Unsupported Media Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.16] response.

	Responses now have Content-Type: application/json.

	#180: allow more expressive has and any searches.

	#195: convert UUID objects to strings when converting an instance of a model
to a dictionary.

	#202: allow setting hybrid properties with expressions and setters.

	#203: adds the include_methods keyword argument to
APIManager.create_api(), which allows JSON responses to include the
result of calling arbitrary methods of instances of models.

	#204, 205: allow parameters in Content-Type header.

Version 0.10.1

Released on May 8, 2013.

	#115: change assertEqual() methods to assert statements in tests.

	#184, #186: Switch to nose [http://nose.readthedocs.org] for testing.

	#197: documents technique for adding filters in processors when there are
none initially.

Version 0.10.0

Released on April 30, 2013.

	#2: adds basic GET [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3] access to one level of relationship depth
for models.

	#113: interpret empty strings for date fields as None objects.

	#115: use Python’s built-in assert statements for testing

	#128: allow disjunctions when filtering search queries.

	#130: documentation and examples now more clearly show search examples.

	#135: added support for hybrid properties.

	#139: remove custom code for authentication in favor of user-defined pre- and
postprocessors (this supercedes the fix from #154).

	#141: relax requirement for version of python-dateutil [http://labix.org/python-dateutil] to be not equal to 2.0 if using Python
version 2.6 or 2.7.

	#146: preprocessors now really execute before other code.

	#148: adds support for SQLAlchemy association proxies [http://docs.sqlalchemy.org/en/latest/orm/extensions/associationproxy.html].

	#154 (this fix is irrelevant due to #139): authentication function now may
raise an exception instead of just returning a Boolean.

	#157: POST [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5] requests now receive a response containing all
fields of the created instance.

	#162: allow pre- and postprocessors to indicate that no change has occurred.

	#164, #172, and #173: PATCH [http://tools.ietf.org/html/rfc5789#section-2] requests update fields on related
instances.

	#165: fixed bug in automatic exposing of URLs for related instances.

	#170: respond with correct HTTP status codes when a query for a single
instance results in none or multiple instances.

	#174: allow dynamically loaded relationships for automatically exposed URLs
of related instances.

	#176: get model attribute instead of column name when getting name of primary
key.

	#182: allow POST [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5] requests that set hybrid properties.

	#152: adds some basic server-side logging for exceptions raised by views.

Version 0.9.3

Released on February 4, 2013.

	Fixes incompatibility with Python 2.5 try/except syntax.

	#116: handle requests which raise IntegrityError [http://sqlalchemy.org/docs/core/exceptions.html#sqlalchemy.exc.IntegrityError].

Version 0.9.2

Released on February 4, 2013.

	#82, #134, #136: added request pre- and postprocessors.

	#120: adds support for JSON-P callbacks in GET [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3] requests.

Version 0.9.1

Released on January 17, 2013.

	#126: fix documentation build failure due to bug in a dependency.

	#127: added “ilike” query operator.

Version 0.9.0

Released on January 16, 2013.

	Removed ability to provide a Session [http://sqlalchemy.org/docs/orm/session_api.html#sqlalchemy.orm.session.Session] class
when initializing APIManager; provide an instance of the class
instead.

	Changes some dynamically loaded relationships used for testing and in
examples to be many-to-one instead of the incorrect one-to-many. Versions of
SQLAlchemy after 0.8.0b2 raise an exception when the latter is used.

	#105: added ability to set a list of related model instances on a model.

	#107: server responds with an error code when a PATCH [http://tools.ietf.org/html/rfc5789#section-2] or
POST [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5] request specifies a field which does not exist on the
model.

	#108: dynamically loaded relationships should now be rendered correctly by
the views._to_dict() function regardless of whether they are a list or
a single object.

	#109: use sphinxcontrib-issuetracker [https://sphinxcontrib-issuetracker.readthedocs.org/en/latest] to render links to GitHub issues in
documentation.

	#110: enable results_per_page query parameter for clients, and added
max_results_per_page keyword argument to APIManager.create_api().

	#114: fix bug where string representations of integers were converted to
integers.

	#117: allow adding related instances on PATCH [http://tools.ietf.org/html/rfc5789#section-2] requests for
one-to-one relationships.

	#123: PATCH [http://tools.ietf.org/html/rfc5789#section-2] requests to instances which do not exist result in
a 404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] response.

Version 0.8.0

Released on November 19, 2012.

	#94: views._to_dict() should return a single object instead of a list
when resolving dynamically loaded many-to-one relationships.

	#104: added num_results key to paginated JSON responses.

Version 0.7.0

Released on October 9, 2012.

	Added working include and exclude functionality to the
views._to_dict() function.

	Added exclude_columns keyword argument to APIManager.create_api().

	#79: attempted to access attribute of None in constructor of
APIManager.

	#83: allow POST [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5] requests with one-to-one related instances.

	#86: allow specifying include and exclude for related models.

	#91: correctly handle POST [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5] requests to nullable
DateTime columns.

	#93: Added a total_pages mapping to the JSON response.

	#98: GET [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3] requests to the function evaluation endpoint should
not have a data payload.

	#101: exclude in views._to_dict() function now correctly excludes
requested fields from the returned dictionary.

Version 0.6

Released on June 20, 2012.

	Added support for accessing model instances via arbitrary primary keys,
instead of requiring an integer column named id.

	Added example which uses curl as a client.

	Added support for pagination of responses.

	Fixed issue due to symbolic link from README to README.md
when running pip bundle foobar Flask-Restless.

	Separated API blueprint creation from registration, using
APIManager.create_api() and APIManager.create_api_blueprint().

	Added support for pure SQLAlchemy in addition to Flask-SQLAlchemy.

	#74: Added post_form_preprocessor keyword argument to
APIManager.create_api().

	#77: validation errors are now correctly handled on PATCH [http://tools.ietf.org/html/rfc5789#section-2]
requests.

Version 0.5

Released on April 10, 2012.

	Dual-licensed under GNU AGPLv3+ and 3-clause BSD license.

	Added capturing of exceptions raised during field validation.

	Added examples/separate_endpoints.py, showing how to create separate
API endpoints for a single model.

	Added include_columns keyword argument to
create_api() method to allow users to
specify which columns of the model are exposed in the API.

	Replaced Elixir with Flask-SQLAlchemy. Flask-Restless now only supports
Flask-SQLAlchemy.

Version 0.4

Released on March 29, 2012.

	Added Python 2.5 and Python 2.6 support.

	Allow users to specify which HTTP methods for a particular API will require
authentication and how that authentication will take place.

	Created base classes for test cases.

	Moved the evaluate_functions function out of the
flask_restless.search module and corrected documentation about how
function evaluation works.

	Added allow_functions keyword argument to
create_api().

	Fixed bug where we weren’t allowing PUT requests in
create_api().

	Added collection_name keyword argument to
create_api() to allow user provided names in
URLs.

	Added allow_patch_many keyword argument to
create_api() to allow enabling or disabling
the PATCH many functionality.

	Disable the PATCH many functionality by default.

Version 0.3

Released on March 4, 2012.

	Initial release in Flask extension format.

 Copyright 2012, 2013, 2014, 2015, 2016 Jeffrey Finkelstein and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	Flask-Restless 1.0.0b1 documentation

 HTTP Routing Table

 /api

 			

 		
 /api	

 	
 	
 GET /api/person	

 	
 	
 GET /api/person/1	

 	
 	
 GET /api/person/1/comments	

 	
 	
 GET /api/person/1/comments/2	

 	
 	
 GET /api/person/1/relationships/comments	

 	
 	
 POST /api/person	

 	
 	
 POST /api/person/1/relationships/comments	

 	
 	
 DELETE /api/person/1	

 	
 	
 DELETE /api/person/1/relationships/comments	

 	
 	
 PATCH /api/person/1	

 	
 	
 PATCH /api/person/1/relationships/comments	

 Copyright 2012, 2013, 2014, 2015, 2016 Jeffrey Finkelstein and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	Flask-Restless 1.0.0b1 documentation

 Python Module Index

 f

 			

 		
 f	

 	[image: -]
 	
 flask	

 	
 	
 flask.ext.restless	

 Copyright 2012, 2013, 2014, 2015, 2016 Jeffrey Finkelstein and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	Flask-Restless 1.0.0b1 documentation

Index

 A
 | C
 | D
 | F
 | I
 | M
 | P
 | S
 | U

A

 	

 	APIManager (class in flask.ext.restless)

C

 	

 	collection_name() (in module flask.ext.restless)

 	create_api() (flask.ext.restless.APIManager method)

 	

 	create_api_blueprint() (flask.ext.restless.APIManager method)

D

 	

 	DeserializationException (class in flask.ext.restless)

 	

 	Deserializer (class in flask.ext.restless)

F

 	

 	flask.ext.restless (module)

I

 	

 	init_app() (flask.ext.restless.APIManager method)

M

 	

 	model_for() (in module flask.ext.restless)

P

 	

 	primary_key_for() (in module flask.ext.restless)

 	

 	ProcessingException (class in flask.ext.restless)

S

 	

 	SerializationException (class in flask.ext.restless)

 	Serializer (class in flask.ext.restless)

 	

 	serializer_for() (in module flask.ext.restless)

 	simple_serialize() (in module flask.ext.restless)

U

 	

 	url_for() (in module flask.ext.restless)

 Copyright 2012, 2013, 2014, 2015, 2016 Jeffrey Finkelstein and contributors.
 Created using Sphinx 1.3.5.

 _static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

_static/up.png

search.html

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		Flask-Restless 1.0.0b1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, 2013, 2014, 2015, 2016 Jeffrey Finkelstein and contributors.
 Created using Sphinx 1.3.5.

_static/down-pressed.png

_static/flask-restless-small.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/flask-restless.png
Flask-
7 M4 Restless

_static/comment.png

_static/plus.png

