
logo.pdf

Flask-Restless Documentation
Release 1.0.0b1

April 04, 2016

Contents

I User’s guide 3

1 Downloading and installing Flask-Restless 5

2 Quickstart 7

3 Creating API endpoints 9
3.1 Deferred API registration . 12

4 Requests and responses 15
4.1 Fetching resources and relationships . 15
4.2 Creating resources . 37
4.3 Deleting resources . 39
4.4 Updating resources . 39
4.5 Updating relationships . 41
4.6 Resource ID must be a string . 44
4.7 Trailing slashes in URLs . 44
4.8 Date and time fields . 44
4.9 Errors and error messages . 44
4.10 JSONP callbacks . 45
4.11 JSON API extensions . 45
4.12 Cross-Origin Resource Sharing (CORS) 45

5 Customizing the ReSTful interface 47
5.1 HTTP methods . 47
5.2 API prefix . 48
5.3 Collection name . 48
5.4 Specifying one of many primary keys . 49
5.5 Enable bulk operations . 49
5.6 Custom serialization . 49
5.7 Capturing validation errors . 51
5.8 Request preprocessors and postprocessors 52

i

5.9 Custom queries . 56

II API reference 59

6 API 61
6.1 The API Manager class . 61
6.2 Global helper functions . 68
6.3 Serialization helpers . 71
6.4 Pre- and postprocessor helpers . 72

III Additional information 73

7 Similar projects 75

8 Copyright and license 77

9 Changelog 79
9.1 Version 1.0.0b1 . 79
9.2 Older versions . 80

ii

Flask-Restless provides simple generation of ReSTful APIs for database models de-
fined using SQLAlchemy (or Flask-SQLAlchemy). The generated APIs satisfy the re-
quirements of the JSON API specification.

Warning: This is a “beta” version, so there may be more bugs than usual. There
are two fairly serious known issues with this version.
First, updating relationships via association proxies is not working correctly. We
cannot support many-to-many relationships until this is resolved. If you have any
insight on how to fix this, please comment on GitHub issue #480.
Second, we would like to make it easy to support serialization via third party se-
rialization libraries such as Marshmallow. In order to do this correctly, we need
to separate serialization and deserialization into two parts each: (de)serializing a
single resource and (de)serializing many resources from a JSON API document. I
have not quite finished this yet. You can see the updated Marshmallow example on
GitHub, but it will not work until the serialization code is updated. If you have any
comments, please file a new issue on GitHub.

1

http://jsonapi.org
https://docs.sqlalchemy.org/en/latest/orm/extensions/associationproxy.html
https://marshmallow.readthedocs.org/
https://github.com/jfinkels/flask-restless/compare/marshmallow-example

2

Part I

USER’S GUIDE

How to use Flask-Restless in your own projects. Much of the documentation in this
chapter assumes some familiarity with the terminology and interfaces of the JSON API
specification.

3

4

CHAPTER 1

Downloading and installing
Flask-Restless

Flask-Restless can be downloaded from the Python Package Index. The development
version can be downloaded from GitHub. However, it is better to install with pip (in
a virtual environment provided by virtualenv):

pip install Flask-Restless

Flask-Restless supports all Python versions that Flask supports, which currently in-
clude versions 2.6, 2.7, 3.3, and 3.4.

Flask-Restless has the following dependencies (which will be automatically installed
if you use pip):

• Flask version 0.10 or greater

• SQLAlchemy version 0.8 or greater

• mimerender version 0.5.2 or greater

• python-dateutil version strictly greater than 2.2

• Flask-SQLAlchemy, only if you want to define your models using Flask-
SQLAlchemy (which we recommend)

5

https://pypi.python.org/pypi/Flask-Restless
https://github.com/jfinkels/flask-restless
http://flask.pocoo.org
https://sqlalchemy.org
https://mimerender.readthedocs.org
http://labix.org/python-dateutil
https://packages.python.org/Flask-SQLAlchemy

6

CHAPTER 2

Quickstart

For the restless:

1 import flask
2 import flask.ext.sqlalchemy
3 import flask.ext.restless
4

5 # Create the Flask application and the Flask-SQLAlchemy object.
6 app = flask.Flask(__name__)
7 app.config['DEBUG'] = True
8 app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:////tmp/test.db'
9 db = flask.ext.sqlalchemy.SQLAlchemy(app)

10

11 # Create your Flask-SQLALchemy models as usual but with the following
12 # restriction: they must have an __init__ method that accepts keyword
13 # arguments for all columns (the constructor in
14 # flask.ext.sqlalchemy.SQLAlchemy.Model supplies such a method, so you
15 # don't need to declare a new one).
16 class Person(db.Model):
17 id = db.Column(db.Integer, primary_key=True)
18 name = db.Column(db.Unicode)
19 birth_date = db.Column(db.Date)
20

21 class Article(db.Model):
22 id = db.Column(db.Integer, primary_key=True)
23 title = db.Column(db.Unicode)
24 published_at = db.Column(db.DateTime)
25 author_id = db.Column(db.Integer, db.ForeignKey('person.id'))
26 author = db.relationship(Person, backref=db.backref('articles',
27 lazy='dynamic'))
28

29

30 # Create the database tables.
31 db.create_all()
32

33 # Create the Flask-Restless API manager.

7

34 manager = flask.ext.restless.APIManager(app, flask_sqlalchemy_db=db)
35

36 # Create API endpoints, which will be available at /api/<tablename> by
37 # default. Allowed HTTP methods can be specified as well.
38 manager.create_api(Person, methods=['GET', 'POST', 'DELETE'])
39 manager.create_api(Article, methods=['GET'])
40

41 # start the flask loop
42 app.run()

You may find this example at examples/quickstart.py in the source distribution; you
may also view it online. Further examples can be found in the examples/ directory in
the source distribution or on the web

8

https://github.com/jfinkels/flask-restless/tree/master/examples/quickstart.py
https://github.com/jfinkels/flask-restless/tree/master/examples\T1\textgreater {}

CHAPTER 3

Creating API endpoints

To use this extension, you must have defined your database models using either
SQLAlchemy or Flask-SQLALchemy. The basic setup in either case is nearly the same.

If you have defined your models with Flask-SQLAlchemy, first, create your Flask ob-
ject, SQLAlchemy object, and model classes as usual but with one additional restriction:
each model must have a primary key column named id of type sqlalchemy.Integer
or type sqlalchemy.Unicode.

from flask import Flask
from flask.ext.sqlalchemy import SQLAlchemy

app = Flask(__name__)
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:////tmp/test.db'
db = SQLAlchemy(app)

class Person(db.Model):
id = db.Column(db.Integer, primary_key=True)

class Article(db.Model):
id = db.Column(db.Integer, primary_key=True)
author_id = db.Column(db.Integer, db.ForeignKey('person.id'))
author = db.relationship(Person, backref=db.backref('articles'))

db.create_all()

If you are using pure SQLAlchemy:

from flask import Flask
from sqlalchemy import Column, Integer, Unicode
from sqlalchemy import ForeignKey
from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import backref, relationship
from sqlalchemy.orm import scoped_session, sessionmaker

9

http://flask.pocoo.org/docs/api/#flask.Flask

app = Flask(__name__)
engine = create_engine('sqlite:////tmp/testdb.sqlite', convert_unicode=True)
Session = sessionmaker(autocommit=False, autoflush=False, bind=engine)
mysession = scoped_session(Session)

Base = declarative_base()
Base.metadata.bind = engine

class Person(Base):
id = Column(Integer, primary_key=True)

class Article(Base):
id = Column(Integer, primary_key=True)
author_id = Column(Integer, ForeignKey('person.id'))
author = relationship(Person, backref=backref('articles'))

Base.metadata.create_all()

Second, instantiate an APIManager object with the Flask and SQLAlchemy objects:

from flask.ext.restless import APIManager

manager = APIManager(app, flask_sqlalchemy_db=db)

Or if you are using pure SQLAlchemy, specify the session you created above instead:

manager = APIManager(app, session=mysession)

Third, create the API endpoints that will be accessible to web clients:

person_blueprint = manager.create_api(Person, methods=['GET', 'POST'])
article_blueprint = manager.create_api(Article)

You can specify which HTTP methods are available for each API endpoint. In this
example, the client can fetch and create people, but only fetch articles (the default if no
methods are specified). There are many options for customizing the endpoints created
at this step; for more information, see Customizing the ReSTful interface.

Due to the design of Flask, these APIs must be created before your application handles
any requests. The return value of APIManager.create_api() is the blueprint in which
the endpoints for the specified database model live. The blueprint has already been
registered on the Flask application, so you do not need to register it yourself. It is
provided so that you can examine its attributes, but if you don’t need it then just
ignore it:

methods = ['GET', 'POST']
manager.create_api(Person, methods=methods)
manager.create_api(Article)

If you wish to create the blueprint for the API without registering it (for example, if

10

http://flask.pocoo.org/docs/api/#flask.Flask
http://flask.pocoo.org/docs/api/#flask.Flask

you wish to register it manually later in your code), use the create_api_blueprint()
method instead. You must provide an additional positional argument, name, to this
method:

blueprint = manager.create_api_blueprint('person', Person, methods=methods)
later...
someapp.register_blueprint(blueprint)

By default, the API for Person in the above code samples will be accessible
at <base_url>/api/person, where the person part of the URL is the value of
Person.__tablename__:

>>> import json
>>> # The python-requests library is installable from PyPI.
>>> import requests
>>> # Let's create a new person resource with the following fields.
>>> newperson = {'type': 'person', 'name': u'Lincoln', 'age': 23}
>>> # Our requests must have the appropriate JSON API headers.
>>> headers = {'Content-Type': 'application/vnd.api+json',
... 'Accept': 'application/vnd.api+json'}
>>> # Assume we have a Flask application running on localhost.
>>> r = requests.post('http://localhost/api/person',
... data=json.dumps(newperson), headers=headers)
>>> r.status_code
201
>>> document = json.loads(r.data)
>>> dumps(document, indent=2)
{
"data": {
"id": "1",
"type": "person",
"relationships": {
"articles": {
"data": [],
"links": {
"related": "http://localhost/api/person/1/articles",
"self": "http://localhost/api/person/1/relationships/articles"

}
},

},
"links": {
"self": "http://localhost/api/person/1"

}
}
"meta": {},
"jsonapi": {
"version": "1.0"

}
}
>>> newid = document['data']['id']
>>> r = requests.get('/api/person/{0}'.format(newid), headers=headers)

11

>>> r.status_code
200
>>> document = loads(r.data)
>>> dumps(document, indent=2)
{
"data": {
"id": "1",
"type": "person",
"relationships": {
"articles": {
"data": [],
"links": {
"related": "http://localhost/api/person/1/articles",
"self": "http://localhost/api/person/1/relationships/articles"

}
},

},
"links": {
"self": "http://localhost/api/person/1"

}
}
"meta": {},
"jsonapi": {
"version": "1.0"

}
}

If the primary key is a Unicode instead of an Integer, the instances will be ac-
cessible at URL endpoints like http://<host>:<port>/api/person/foo instead of
http://<host>:<port>/api/person/1.

3.1 Deferred API registration

If you only wish to create APIs on a single Flask application and have access to
the Flask application before you create the APIs, you can provide a Flask applica-
tion as an argument to the constructor of the APIManager class, as described above.
However, if you wish to create APIs on multiple Flask applications or if you do not
have access to the Flask application at the time you create the APIs, you can use the
APIManager.init_app() method.

If a APIManager object is created without a Flask application,

manager = APIManager(session=session)

then you can create your APIs without registering them on a particular Flask applica-
tion:

manager.create_api(Person)
manager.create_api(Article)

12

Later, you can call the init_app() method with any Flask objects on which you would
like the APIs to be available:

app1 = Flask('app1')
app2 = Flask('app2')
manager.init_app(app1)
manager.init_app(app2)

The manager creates and stores a blueprint each time create_api() is invoked, and
registers those blueprints each time init_app() is invoked. (The name of each
blueprint will be a uuid.UUID.)

Changed in version 1.0.0: The behavior of the init_app() method was strange and
incorrect before version 1.0.0. It is best not to use earlier versions.

13

http://flask.pocoo.org/docs/api/#flask.Flask
http://docs.python.org/library/uuid.html#uuid.UUID

14

CHAPTER 4

Requests and responses

Requests and responses are all in the JSON API format, so each request must
include an Accept header whose value is application/vnd.api+json and any re-
quest that contains content must include a Content-Type header whose value is
application/vnd.api+json. If they do not, the client will receive an error response.

This section of the documentation assumes some familiarity with the JSON API spec-
ification.

4.1 Fetching resources and relationships

For the purposes of concreteness in this section, suppose we have executed the follow-
ing code on the server:

from flask import Flask
from flask.ext.sqlalchemy import SQLAlchemy
from flask.ext.restless import APIManager

app = Flask(__name__)
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:////tmp/test.db'
db = SQLAlchemy(app)

class Person(db.Model):
id = db.Column(db.Integer, primary_key=True)

class Article(db.Model):
id = db.Column(db.Integer, primary_key=True)
author_id = db.Column(db.Integer, db.ForeignKey('person.id'))
author = db.relationship(Person, backref=db.backref('articles'))

db.create_all()
manager = APIManager(app, flask_sqlalchemy_db=db)
manager.create_api(Person)
manager.create_api(Article)

15

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17

By default, all columns and relationships will appear in the resource object represen-
tation of an instance of your model. See Specifying which fields appear in responses for
more information on specifying which values appear in responses.

To fetch a collection of resources, the request

GET /api/person HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

yields the response

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
"data": [
{
"id": "1",
"links": {
"self": "http://example.com/api/person/1"

},
"relationships": {
"articles": {
"data": [],
"links": {
"related": "http://example.com/api/person/1/articles",
"self": "http://example.com/api/person/1/relationships/articles"

}
}

},
"type": "person"

}
],
"links": {
"first": "http://example.com/api/person?page[number]=1&page[size]=10",
"last": "http://example.com/api/person?page[number]=1&page[size]=10",
"next": null,
"prev": null,
"self": "http://example.com/api/person"

},
"meta": {
"total": 1

}
}

To fetch a single resource, the request

GET /api/person/1 HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

yields the response

16

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
"data": {
"id": "1",
"links": {
"self": "http://example.com/api/person/1"

},
"relationships": {
"articles": {
"data": [],
"links": {
"related": "http://example.com/api/person/1/articles",
"self": "http://example.com/api/person/1/relationships/articles"

}
}

},
"type": "person"

}
}

To fetch a resource from a to-one relationship, the request

GET /api/article/1/author HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

yields the response

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
"data": {
"id": "1",
"links": {
"self": "http://example.com/api/person/1"

},
"relationships": {
"articles": {
"data": [
{
"id": "1",
"type": "article"

}
],
"links": {
"related": "http://example.com/api/person/1/articles",
"self": "http://example.com/api/person/1/relationships/articles"

}

17

}
},
"type": "person"

}
}

To fetch a resource from a to-many relationship, the request

GET /api/person/1/articles HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

yields the response

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
"data": [
{
"id": "2",
"links": {
"self": "http://example.com/api/articles/2"

},
"relationships": {
"author": {
"data": {
"id": "1",
"type": "person",

},
"links": {

"related": "http://example.com/api/articles/2/author",
"self": "http://example.com/api/articles/2/relationships/author"

}
}

},
"type": "article"

}
],
"links": {
"first": "http://example.com/api/person/1/articles?page[number]=1&page[size]=10",
"last": "http://example.com/api/person/1/articles?page[number]=1&page[size]=10",
"next": null,
"prev": null,
"self": "http://example.com/api/person/1/articles"

},
"meta": {
"total": 1

}
}

To fetch a single resource from a to-many relationship, the request

18

GET /api/person/1/articles/2 HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

yields the response

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
"data": {
"id": "2",
"links": {
"self": "http://example.com/api/articles/2"

},
"relationships": {
"author": {
"data": {
"id": "1",
"type": "person"

},
"links": {
"related": "http://example.com/api/articles/2/author",
"self": "http://example.com/api/articles/2/relationships/author"

}
}

},
"type": "article"

}
}

To fetch the link object for a to-one relationship, the request

GET /api/article/1/relationships/author HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

yields the response

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
"data": {
"id": "1",
"type": "person"

}
}

To fetch the link objects for a to-many relationship, the request

19

GET /api/person/1/relationships/articles HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

yields the response

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
"data": [
{
"id": "1",
"type": "article"

},
{
"id": "2",
"type": "article"

}
]

}

4.1.1 Function evaluation

This section describes behavior that is not part of the JSON API specification.

If the allow_functions keyword argument to APIManager.create_api() is set to True
when creating an API for a model, then the endpoint /api/eval/person will be made
available for GET requests. This endpoint responds to requests for evaluation of SQL
functions on all instances the model.

If the client specifies the functions query parameter, it must be a percent-encoded list
of function objects, as described below.

A function object is a JSON object. A function object must be of the form

{"name": <function_name>, "field": <field_name>}

where <function_name> is the name of a SQL function as provided by SQLAlchemy’s
func object.

For example, to get the average age of all people in the database,

GET /api/eval/person?functions=[{"name":"avg","field":"age"}] HTTP/1.1
Host: example.com
Accept: application/json

The response will be a JSON object with a single element, data, containing a list of the
results of all the function evaluations requested by the client, in the same order as in
the functions query parameter. For example, to get the sum and the average ages of
all people in the database, the request

20

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3
https://en.wikipedia.org/wiki/Percent-encoding#Percent-encoding_the_percent_character
https://docs.sqlalchemy.org/en/latest/core/expression_api.html#sqlalchemy.sql.expression.func

GET /api/eval/person?functions=[{"name":"avg","field":"age"},{"name":"sum","field":"age"}] HTTP/1.1
Host: example.com
Accept: application/json

yields the response

HTTP/1.1 200 OK
Content-Type: application/json

[15.0, 60.0]

Example

To get the total number of resources in the collection (that is, the number of instances
of the model), you can use the function object

{"name": "count", "field": "id"}

Then the request

GET /api/eval/person?functions=[{"name":"count","field":"id"}] HTTP/1.1
Host: example.com
Accept: application/json

yields the response

HTTP/1.1 200 OK
Content-Type: application/json

{
"data": [42]

}

4.1.2 Inclusion of related resources

For more information on client-side included resources, see Inclusion of Related Resources
in the JSON API specification.

By default, no related resources will be included in a compound document on requests
that would return data. For the client to request that the response includes related
resources in a compound document, use the include query parameter. For example,
to fetch a single resource and include all resources related to it, the request

GET /api/person/1?include=articles HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

yields the response

21

http://jsonapi.org/format/#fetching-includes

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
"data": {
"id": "1",
"links": {
"self": "http://example.com/api/person/1"

},
"relationships": {
"articles": {
"data": [
{
"id": "1",
"type": "article"

}
],
"links": {
"related": "http://example.com/api/person/1/articles",
"self": "http://example.com/api/person/1/relationships/articles"

}
}

},
"type": "person"

}
"included": [
{
"id": "1",
"links": {
"self": "http://example.com/api/article/1"

},
"relationships": {
"author": {
"data": {
"id": "1",
"type": "person"

},
"links": {
"related": "http://example.com/api/article/1/author",
"self": "http://example.com/api/article/1/relationships/author"

}
}

},
"type": "article"

}
]

}

To specify a default set of related resources to include when the client does not
specify any include query parameter, use the includes keyword argument to the
APIManager.create_api() method.

22

4.1.3 Specifying which fields appear in responses

For more information on client-side sparse fieldsets, see Sparse Fieldsets in the JSON API
specification.

Warning: The server-side configuration for specifying which fields appear in re-
source objects as described in this section is simplistic; a better way to specify which
fields are included in your responses is to use a Python object serialization library
and specify custom serialization and deserialization functions as described in Cus-
tom serialization.

By default, all fields of your model will be exposed by the API. A client can re-
quest that only certain fields appear in the resource object in a response to a GET
request by using the only query parameter. On the server side, you can specify
which fields appear in the resource object representation of an instance of the model
by setting the only, exclude and additional_attributes keyword arguments to the
APIManager.create_api() method.

If only is an iterable of column names or actual column attributes, only those fields
will appear in the resource object that appears in responses to fetch instances of this
model. If instead exclude is specified, all fields except those specified in that iterable
will appear in responses. If additional_attributes is an iterable of column names,
the values of these attributes will also appear in the response; this is useful if you wish
to see the value of some attribute that is not a column or relationship.

Attention: The type and id elements will always appear in the resource object,
regardless of whether the server or the client tries to exclude them.

For example, if your models are defined like this (using Flask-SQLAlchemy):

class Person(db.Model):
id = db.Column(db.Integer, primary_key=True)
name = db.Column(db.Unicode)
birthday = db.Column(db.Date)
articles = db.relationship('Article')

This class attribute is not a column.
foo = 'bar'

class Article(db.Model):
id = db.Column(db.Integer, primary_key=True)
author_id = db.Column(db.Integer, db.ForeignKey('person.id'))

and you want your resource objects to include only the values of the name and birthday
columns, create your API with the following arguments:

apimanager.create_api(Person, only=['name', 'birthday'])

Now a request like

23

http://jsonapi.org/format/#fetching-sparse-fieldsets
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3

GET /api/person/1 HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

yields the response

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
"data": {
"id": "1",
"links": {
"self": "http://example.com/api/person/1"

},
"attributes": {
"birthday": "1969-07-20",
"name": "foo"

},
"type": "person"

}
}

If you want your resource objects to exclude the birthday and name columns:

apimanager.create_api(Person, exclude=['name', 'birthday'])

Now the same request yields the response

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
"data": {
"id": "1",
"links": {
"self": "http://example.com/api/person/1"

}
"relationships": {
"articles": {
"data": [],
"links": {
"related": "http://example.com/api/person/1/articles",
"self": "http://example.com/api/person/1/links/articles"

}
},

},
"type": "person"

}
}

If you want your resource objects to include the value for the class attribute foo:

24

apimanager.create_api(Person, additional_attributes=['foo'])

Now the same request yields the response

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
"data": {
"attributes": {
"birthday": "1969-07-20",
"foo": "bar",
"name": "foo"

},
"id": "1",
"links": {
"self": "http://example.com/api/person/1"

}
"relationships": {
"articles": {
"data": [],
"links": {
"related": "http://example.com/api/person/1/articles",
"self": "http://example.com/api/person/1/links/articles"

}
}

},
"type": "person"

}
}

4.1.4 Sorting

Clients can sort according to the sorting protocol described in the Sorting section of
the JSON API specification. Sorting by a nullable attribute will cause resources with
null attributes to appear first.

Clients can also request grouping by using the group query parameter. For example,
if your database has two people with name ’foo’ and two people with name ’bar’, a
request like

GET /api/person?group=name HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

yields the response

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

25

http://jsonapi.org/format/#fetching-sorting

{
"data": [
{
"attributes": {
"name": "foo",

},
"id": "1",
"links": {
"self": "http://example.com/api/person/1"

},
"relationships": {
"articles": {
"data": [],
"links": {
"related": "http://example.com/api/person/1/articles",
"self": "http://example.com/api/person/1/relationships/articles"

}
}

},
"type": "person"

},
{
"attributes": {
"name": "bar",

},
"id": "3",
"links": {
"self": "http://example.com/api/person/3"

},
"relationships": {
"articles": {
"data": [],
"links": {
"related": "http://example.com/api/person/3/articles",
"self": "http://example.com/api/person/3/relationships/articles"

}
}

},
"type": "person"

},
],
"links": {
"first": "http://example.com/api/person?group=name&page[number]=1&page[size]=10",
"last": "http://example.com/api/person?group=name&page[number]=1&page[size]=10",
"next": null,
"prev": null,
"self": "http://example.com/api/person?group=name"

},
"meta": {
"total": 2

}

26

}

4.1.5 Pagination

Pagination works as described in the JSON API specification, via the page[number] and
page[size] query parameters. Pagination respects sorting, grouping, and filtering.
The first page is page one. If no page number is specified by the client, the first page
will be returned. By default, pagination is enabled and the page size is ten. If the page
size specified by the client is greater than the maximum page size as configured on the
server, then the query parameter will be ignored.

To set the default page size for collections of resources, use the page_size keyword
argument to the APIManager.create_api() method. To set the maximum page size
that the client can request, use the max_page_size argument. Even if page_size is
greater than max_page_size, at most max_page_size resources will be returned in a
page. If max_page_size is set to anything but a positive integer, the client will be able
to specify arbitrarily large page sizes. If, further, page_size is set to anything but a
positive integer, pagination will be disabled by default, and any GET request that does
not specify a page size in its query parameters will get a response with all matching
results.

Attention: Disabling pagination can result in arbitrarily large responses!

For example, to set each page to include only two results:

apimanager.create_api(Person, page_size=2)

Then a GET request to /api/person?page[number]=2 would yield the response

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
"data": [
{
"id": "3",
"type": "person",
"attributes": {

"name": "John"
}

}
{
"id": "4",
"type": "person",
"attributes": {

"name": "Paul"
}

}
],

27

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3

"links": {
"first": "http://example.com/api/person?page[number]=1&page[size]=2",
"last": "http://example.com/api/person?page[number]=3&page[size]=2",
"next": "http://example.com/api/person?page[number]=3&page[size]=2",
"prev": "http://example.com/api/person?page[number]=1&page[size]=2",
"self": "http://example.com/api/person"

},
"meta": {
"total": 6

}
}

4.1.6 Filtering

Requests that would normally return a collection of resources can be filtered so that
only a subset of the resources are returned in a response. If the client specifies the
filter[objects] query parameter, it must be a URL encoded JSON list of filter objects,
as described below.

Quick client examples for filtering

The following are some quick examples of making filtered GET requests from different
types of clients. More complete documentation is in subsequent sections. In these
examples, each client will filter by instances of the model Person whose names contain
the letter “y”.

Using the Python requests library:

import requests
import json

url = 'http://127.0.0.1:5000/api/person'
headers = {'Accept': 'application/vnd.api+json'}

filters = [dict(name='name', op='like', val='%y%')]
params = {'filter[objects]': json.dumps(filters)}

response = requests.get(url, params=params, headers=headers)
assert response.status_code == 200
print(response.json())

Using jQuery:

var filters = [{"name": "id", "op": "like", "val": "%y%"}];
$.ajax({

data: {"filter[objects]": JSON.stringify(filters)},
headers: {

"Accept": JSONAPI_MIMETYPE
},

28

https://en.wikipedia.org/wiki/Percent-encoding
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3
http://docs.python-requests.org/en/latest/
http://jquery.com/

success: function(data) { console.log(data.objects); },
url: 'http://127.0.0.1:5000/api/person'

});

Using curl:

curl \
-G \
-H "Accept: application/vnd.api+json" \
-d "filter[objects]=[{\"name\":\"name\",\"op\":\"like\",\"val\":\"%y%\"}]" \
http://127.0.0.1:5000/api/person

The examples/ directory has more complete versions of these examples.

Filter objects

A filter object is a JSON object. Filter objects are defined recursively as follows. A filter
object may be of the form

{"name": <field_name>, "op": <unary_operator>}

where <field_name> is the name of a field on the model whose instances are being
fetched and <unary_operator> is the name of one of the unary operators supported by
Flask-Restless. For example,

{"name": "birthday", "op": "is_null"}

A filter object may be of the form

{"name": <field_name>, "op": <binary_operator>, "val": <argument>}

where <binary_operator> is the name of one of the binary operators supported by
Flask-Restless and <argument> is the second argument to that binary operator. For
example,

{"name": "age", "op": "gt", "val": 23}

A filter object may be of the form

{"name": <field_name>, "op": <binary_operator>, "field": <field_name>}

The field element indicates that the second argument to the binary operator should
be the value of that field. For example, to filter by resources that have a greater width
than height,

{"name": "width", "op": "gt", "field": "height"}

A filter object may be of the form

{"name": <relation_name>, "op": <relation_operator>, "val": <filter_object>}

where <relation_name> is the name of a relationship on the model whose resources
are being fetched, <relation_operator> is either "has", for a to-one relationship, or

29

http://curl.haxx.se/

"any", for a to-many relationship, and <filter_object> is another filter object. For
example, to filter person resources by only those people that have authored an article
dated before January 1, 2010,

{
"name": "articles",
"op": "any",
"val": {
"name": "date",
"op": "lt",
"val": "2010-01-01"

}
}

For another example, to filter article resources by only those articles that have an au-
thor of age at most fifty,

{
"name": "author",
"op": "has",
"val": {
"name": "age",
"op": "lte",
"val": 50

}
}

A filter object may be a conjunction (“and”) or disjunction (“or”) of other filter objects:

{"or": [<filter_object>, <filter_object>, ...]}

or

{"and": [<filter_object>, <filter_object>, ...]}

For example, to filter by resources that have width greater than height, and length of
at least ten,

{
"and": [
{"name": "width", "op": "gt", "field": "height"},
{"name": "length", "op": "lte", "val": 10}

]
}

How are filter objects used in practice? To get a response in which only those resources
that meet the requirements of the filter objects are returned, clients can make requests
like this:

GET /api/person?filter[objects]=[{"name":"age","op":"<","val":18}] HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

30

Operators

Flask-Restless understands the following operators, which correspond to the appro-
priate SQLAlchemy column operators.

• ==, eq, equals, equals_to

• !=, neq, does_not_equal, not_equal_to

• >, gt, <, lt

• >=, ge, gte, geq, <=, le, lte, leq

• in, not_in

• is_null, is_not_null

• like, ilike, not_like

• has

• any

Flask-Restless also understands the PostgreSQL network address operators <<, <<=,
>>, >>=, <>, and &&.

Warning: If you use a percent sign in the argument to the like operator (for ex-
ample, %somestring%), make sure it is percent-encoded, otherwise the server may
interpret the first few characters of that argument as a percent-encoded character
when attempting to decode the URL.

Requiring singleton collections

If a client wishes a request for a collection to yield a response with a singleton col-
lection, the client can use the filter[single] query parameter. The value of this pa-
rameter must be either 1 or 0. If the value of this parameter is 1 and the response
would yield a collection of either zero or more than two resources, the server instead
responds with 404 Not Found.

For example, a request like

GET /api/person?filter[single]=1&filter[objects]=[{"name":"id","op":"eq","val":1}] HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

yields the response

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
"data": {
"id": "1",
"type": "person",

31

https://docs.sqlalchemy.org/en/latest/core/expression_api.html#sqlalchemy.sql.operators.ColumnOperators
https://www.postgresql.org/docs/current/static/functions-net.html
https://en.wikipedia.org/wiki/Percent-encoding#Percent-encoding_the_percent_character
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

"links": {
"self": "http://example.com/api/person/1"

}
},
"links": {
"self": "http://example.com/api/person?filter[single]=1&filter[objects]=[{\"name\":\"id\",\"op\":\"eq\",\"val\":1}]"

},
}

But a request like

GET /api/person?filter[single]=1 HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

would yield an error response if there were more than one Person instance in the
database.

Filter object examples

Attribute greater than a value

On request

GET /api/person?filter[objects]=[{"name":"age","op":"gt","val":18}] HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

the response will include only those Person instances that have age attribute greater
than or equal to 18:

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
"data": [
{
"attributes": {
"age": 19

},
"id": "2",
"links": {
"self": "http://example.com/api/person/2"

},
"type": "person"

},
{
"attributes": {
"age": 29

},

32

"id": "5",
"links": {
"self": "http://example.com/api/person/5"

},
"type": "person"

},
],
"links": {
"self": "/api/person?filter[objects]=[{\"name\":\"age\",\"op\":\"gt\",\"val\":18}]"

},
"meta": {
"total": 2

}
}

Arbitrary Boolean expression of filters

On request

GET /api/person?filter[objects]=[{"or":[{"name":"age","op":"lt","val":10},{"name":"age","op":"gt","val":20}]}] HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

the response will include only those Person instances that have age attribute either less
than 10 or greater than 20:

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
"data": [
{
"attributes": {
"age": 9

},
"id": "1",
"links": {
"self": "http://example.com/api/person/1"

},
"type": "person"

},
{
"attributes": {
"age": 25

},
"id": "3",
"links": {
"self": "http://example.com/api/person/3"

},

33

"type": "person"
}

],
"links": {
"self": "/api/person?filter[objects]=[{\"or\":[{\"name\":\"age\",\"op\":\"lt\",\"val\":10},{\"name\":\"age\",\"op\":\"gt\",\"val\":20}]}]"

},
"meta": {
"total": 2

}
}

Comparing two attributes

On request

GET /api/box?filter[objects]=[{"name":"width","op":"ge","field":"height"}] HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

the response will include only those Box instances that have width attribute greater
than or equal to the value of the height attribute:

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
"data": [
{
"attributes": {
"height": 10,
"width": 20

}
"id": "1",
"links": {
"self": "http://example.com/api/box/1"

},
"type": "box"

},
{
"attributes": {
"height": 15,
"width": 20

}
"id": "2",
"links": {
"self": "http://example.com/api/box/2"

},
"type": "box"

}

34

],
"links": {
"self": "/api/box?filter[objects]=[{\"name\":\"width\",\"op\":\"ge\",\"field\":\"height\"}]"

},
"meta": {
"total": 100

}
}

Using has and any

On request

GET /api/person?filter[objects]=[{"name":"articles","op":"any","val":{"name":"date","op":"lt","val":"2010-01-01"}}] HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

the response will include only those people that have authored an article dated before
January 1, 2010 (assume in the example below that at least one of the article linkage
objects refers to an article that has such a date):

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
"data": [
{
"id": "1",
"links": {
"self": "http://example.com/api/person/1"

},
"relationships": {
"articles": {
"data": [
{
"id": "1",
"type": "article"

},
{
"id": "2",
"type": "article"

}
],
"links": {
"related": "http://example.com/api/person/1/articles",
"self": "http://example.com/api/person/1/relationships/articles"

}
}

},

35

"type": "person"
}

],
"links": {
"self": "/api/person?filter[objects]=[{\"name\":\"articles\",\"op\":\"any\",\"val\":{\"name\":\"date\",\"op\":\"lt\",\"val\":\"2010-01-01\"}}]"

},
"meta": {
"total": 1

}
}

On request

GET /api/article?filter[objects]=[{"name":"author","op":"has","val":{"name":"age","op":"lte","val":50}}] HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

the response will include only those articles that have an author of age at most fifty
(assume in the example below that the author linkage objects refers to a person that
has such an age):

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
"data": [
{
"id": "1",
"links": {
"self": "http://example.com/api/article/1"

},
"relationships": {
"author": {
"data": {
"id": "7",
"type": "person"

},
"links": {
"related": "http://example.com/api/article/1/author",
"self": "http://example.com/api/article/1/relationships/author"

}
}

},
"type": "article"

}
],
"links": {
"self": "/api/article?filter[objects]=[{\"name\":\"author\",\"op\":\"has\",\"val\":{\"name\":\"age\",\"op\":\"lte\",\"val\":50}}]"

},
"meta": {
"total": 1

36

}
}

4.2 Creating resources

For the purposes of concreteness in this section, suppose we have executed the follow-
ing code on the server:

from flask import Flask
from flask.ext.sqlalchemy import SQLAlchemy
from flask.ext.restless import APIManager

app = Flask(__name__)
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:////tmp/test.db'
db = SQLAlchemy(app)

class Person(db.Model):
id = db.Column(db.Integer, primary_key=True)
name = db.Column(db.Unicode)

db.create_all()
manager = APIManager(app, flask_sqlalchemy_db=db)
manager.create_api(Person, methods=['POST'])

To create a new resource, the request

POST /api/person HTTP/1.1
Host: example.com
Content-Type: application/vnd.api+json
Accept: application/vnd.api+json

{
"data": {
"type": "person",
"attributes": {

"name": "foo"
}

}
}

yields the response

HTTP/1.1 201 Created
Location: http://example.com/api/person/1
Content-Type: application/vnd.api+json

{
"data": {
"attributes": {

37

"name": "foo"
},
"id": "1",
"jsonapi": {
{"version": "1.0"}

},
"links": {
"self": "http://example.com/api/person/bd34b544-ad39-11e5-a2aa-4cbb58b9ee34"

},
"meta": {},
"type": "person"

}
}

To create a new resource with a client-generated ID (if enabled by setting
allow_client_generated_ids to True in APIManager.create_api()), the request

POST /api/person HTTP/1.1
Host: example.com
Content-Type: application/vnd.api+json
Accept: application/vnd.api+json

{
"data": {
"type": "person",
"id": "bd34b544-ad39-11e5-a2aa-4cbb58b9ee34",
"attributes": {
"name": "foo"

}
}

}

yields the response

HTTP/1.1 201 Created
Location: http://example.com/api/person/bd34b544-ad39-11e5-a2aa-4cbb58b9ee34
Content-Type: application/vnd.api+json

{
"data": {
"attributes": {
"name": "foo"

},
"id": "bd34b544-ad39-11e5-a2aa-4cbb58b9ee34",
"links": {
"self": "http://example.com/api/person/bd34b544-ad39-11e5-a2aa-4cbb58b9ee34"

},
"meta": {},
"jsonapi": {
{"version": "1.0"}

},

38

"type": "person"
}

}

The server always responds with 201 Created and a complete resource object on a
request with a client-generated ID.

The server will respond with 400 Bad Request if the request specifies a field that does
not exist on the model.

4.3 Deleting resources

For the purposes of concreteness in this section, suppose we have executed the follow-
ing code on the server:

from flask import Flask
from flask.ext.sqlalchemy import SQLAlchemy
from flask.ext.restless import APIManager

app = Flask(__name__)
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:////tmp/test.db'
db = SQLAlchemy(app)

class Person(db.Model):
id = db.Column(db.Integer, primary_key=True)

db.create_all()
manager = APIManager(app, flask_sqlalchemy_db=db)
manager.create_api(Person, method=['DELETE'])

To delete a resource, the request

DELETE /api/person/1 HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

yields a 204 No Content response.

4.4 Updating resources

For the purposes of concreteness in this section, suppose we have executed the follow-
ing code on the server:

from flask import Flask
from flask.ext.sqlalchemy import SQLAlchemy
from flask.ext.restless import APIManager

app = Flask(__name__)

39

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5

app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:////tmp/test.db'
db = SQLAlchemy(app)

class Person(db.Model):
id = db.Column(db.Integer, primary_key=True)
name = db.Column(db.Unicode)

class Article(db.Model):
id = db.Column(db.Integer, primary_key=True)
author_id = db.Column(db.Integer, db.ForeignKey('person.id'))
author = db.relationship(Person, backref=db.backref('articles'))

db.create_all()
manager = APIManager(app, flask_sqlalchemy_db=db)
manager.create_api(Person, methods=['PATCH'])
manager.create_api(Article)

To update an existing resource, the request

PATCH /api/person/1 HTTP/1.1
Host: example.com
Content-Type: application/vnd.api+json
Accept: application/vnd.api+json

{
"data": {
"type": "person",
"id": 1,
"attributes": {

"name": "foo"
}

}
}

yields a 204 No Content response.

If you set the allow_to_many_replacement keyword argument of
APIManager.create_api() to True, you can replace a to-many relationship en-
tirely by making a request to update a resource. To update a to-many relationship, the
request

PATCH /api/person/1 HTTP/1.1
Host: example.com
Content-Type: application/vnd.api+json
Accept: application/vnd.api+json

{
"data": {
"type": "person",
"id": 1,
"relationships": {

"articles": {

40

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5

"data": [
{
"id": "1",
"type": "article"

},
{
"id": "2",
"type": "article"

}
]

}
}

}
}

yields a 204 No Content response.

The server will respond with 400 Bad Request if the request specifies a field that does
not exist on the model.

4.5 Updating relationships

For the purposes of concreteness in this section, suppose we have executed the follow-
ing code on the server:

from flask import Flask
from flask.ext.sqlalchemy import SQLAlchemy
from flask.ext.restless import APIManager

app = Flask(__name__)
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:////tmp/test.db'
db = SQLAlchemy(app)

class Person(db.Model):
id = db.Column(db.Integer, primary_key=True)
name = db.Column(db.Unicode)

class Article(db.Model):
id = db.Column(db.Integer, primary_key=True)
author_id = db.Column(db.Integer, db.ForeignKey('person.id'))
author = db.relationship(Person, backref=db.backref('articles'))

db.create_all()
manager = APIManager(app, flask_sqlalchemy_db=db)
manager.create_api(Person, methods=['PATCH'])
manager.create_api(Article)

To update a to-one relationship, the request

41

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

PATCH /api/articles/1/relationships/author HTTP/1.1
Host: example.com
Content-Type: application/vnd.api+json
Accept: application/vnd.api+json

{
"data": {
"type": "person",
"id": 1

}
}

yields a 204 No Content response.

To update a to-many relationship (if enabled by setting allow_to_many_replacement
to True in APIManager.create_api()), the request

PATCH /api/people/1/relationships/articles HTTP/1.1
Host: example.com
Content-Type: application/vnd.api+json
Accept: application/vnd.api+json

{
"data": [
{
"type": "article",
"id": 1

},
{
"type": "article",
"id": 2

}
]

}

yields a 204 No Content response.

To add to a to-many relationship, the request

POST /api/person/1/relationships/articles HTTP/1.1
Host: example.com
Content-Type: application/vnd.api+json
Accept: application/vnd.api+json

{
"data": [
{
"type": "article",
"id": 1

},
{
"type": "article",

42

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5

"id": 2
}

]
}

yields a 204 No Content response.

To remove from a to-many relationship, the request

DELETE /api/person/1/links/articles HTTP/1.1
Host: example.com
Content-Type: application/vnd.api+json
Accept: application/vnd.api+json

{
"data": [
{
"type": "article",
"id": 1

},
{
"type": "article",
"id": 2

}
]

}

yields a 204 No Content response.

To remove from a to-many relationship (if enabled by setting
allow_delete_from_to_many_relationships to True in APIManager.create_api()),
the request

DELETE /api/person/1/relationships/articles HTTP/1.1
Host: example.com
Content-Type: application/vnd.api+json
Accept: application/vnd.api+json

{
"data": [
{
"type": "article",
"id": 1

},
{
"type": "article",
"id": 2

}
]

}

yields a 204 No Content response.

43

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5

4.6 Resource ID must be a string

As required by the JSON API, the ID (and type) of a resource must be a string in request
and response documents. This does not mean that the primary key in the database
must be a string, only that it will appear as a string in communications between the
client and the server. For more information, see the Identification section of the JSON
API specification.

4.7 Trailing slashes in URLs

API endpoints do not have trailing slashes. A GET request to, for example,
/api/person/ will result in a 404 Not Found response.

4.8 Date and time fields

Flask-Restless will automatically parse and convert date and time strings into the cor-
responding Python objects. Flask-Restless also understands intervals (also known as
durations), if you specify the interval as an integer representing the number of units
that the interval spans.

If you want the server to set the value of a date or time field of a model as the current
time (as measured at the server), use one of the special strings "CURRENT_TIMESTAMP",
"CURRENT_DATE", or "LOCALTIMESTAMP". When the server receives one of these strings
in a request, it will use the corresponding SQL function to set the date or time of the
field in the model.

4.9 Errors and error messages

Flask-Restless returns the error responses required by the JSON API specification, and
most other server errors yield a 400 Bad Request. Errors are included in the errors
element in the top-level JSON document in the response body.

If a request triggers certain types of errors, the SQLAlchemy session will be rolled
back. Currently these errors are

• DataError,

• IntegrityError,

• ProgrammingError,

• FlushError.

44

http://jsonapi.org/format/#document-resource-object-identification
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://sqlalchemy.org/docs/core/exceptions.html#sqlalchemy.exc.DataError
http://sqlalchemy.org/docs/core/exceptions.html#sqlalchemy.exc.IntegrityError
http://sqlalchemy.org/docs/core/exceptions.html#sqlalchemy.exc.ProgrammingError
http://sqlalchemy.org/docs/orm/exceptions.html#sqlalchemy.orm.exc.FlushError

4.10 JSONP callbacks

Flask-Restless responds to JavaScript clients that request JSONP responses. Add a
callback=myfunc query parameter to the request URL on any request that yields a re-
sponse that contains content (including endpoints for function evaluation; see Function
evaluation) to have the JSON data of the response wrapped in the Javascript function
myfunc. This can be used to circumvent some cross domain scripting security issues.

The Content-Type of a JSONP response is application/javascript instead of
application/vnd.api+json because the payload of such a response is not valid JSON
API.

For example, a request like this:

GET /api/person/1?callback=foo HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

will produce a response like this:

HTTP/1.1 200 OK
Content-Type: application/javascript

foo({"meta": {/*...*/}, "data": {/*...*/}})

Then in your Javascript client code, write the function foo like this:

function foo(response) {
var meta, data;
meta = response.meta;
data = response.data;
// Do something cool here...

}

4.11 JSON API extensions

Flask-Restless does not yet support the official JSON API extension. For progress on
the implementation of the official extensions, see GitHub issues #478 and #477.

4.12 Cross-Origin Resource Sharing (CORS)

Cross-Origin Resource Sharing (CORS) is a protocol that allows JavaScript HTTP
clients to make HTTP requests across Internet domain boundaries while still pro-
tecting against cross-site scripting (XSS) attacks. If you have access to the HTTP
server that serves your Flask application, I recommend configuring CORS there, since
such concerns are beyond the scope of Flask-Restless. However, in case you need
to support CORS at the application level, you should create a function that adds

45

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17
http://enable-cors.org

the necessary HTTP headers after the request has been processed by Flask-Restless
(that is, just before the HTTP response is sent from the server to the client) using the
flask.Blueprint.after_request() method:

from flask import Flask
from flask.ext.restless import APIManager

def add_cors_headers(response):
response.headers['Access-Control-Allow-Origin'] = 'example.com'
response.headers['Access-Control-Allow-Credentials'] = 'true'
Set whatever other headers you like...
return response

app = Flask(__name__)
manager = APIManager(app)
blueprint = manager.create_api_blueprint('mypersonapi', Person)
blueprint.after_request(add_cors_headers)
app.register_blueprint(blueprint)

46

http://flask.pocoo.org/docs/api/#flask.Blueprint.after_request

CHAPTER 5

Customizing the ReSTful interface

5.1 HTTP methods

By default, the APIManager.create_api() method creates a read-only interface; re-
quests with HTTP methods other than GET will cause a response with 405 Method
Not Allowed. To explicitly specify which methods should be allowed for the end-
point, pass a list as the value of keyword argument methods:

apimanager.create_api(Person, methods=['GET', 'POST', 'DELETE'])

This creates an endpoint at /api/person which responds to GET, POST, and DELETE
methods, but not to PATCH.

If you allow GET requests, you will have access to endpoints of the following forms.

GET /api/person

GET /api/person/1

GET /api/person/1/comments

GET /api/person/1/relationships/comments

GET /api/person/1/comments/2

The first four are described explicitly in the JSON API specification. The last is partic-
ular to Flask-Restless; it allows you to access a particular related resource via a rela-
tionship on another resource.

If you allow DELETE requests, you will have access to endpoints of the form

DELETE /api/person/1

If you allow POST requests, you will have access to endpoints of the form

POST /api/person

Finally, if you allow PATCH requests, you will have access to endpoints of the follow-
ing forms.

47

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.6
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.6
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.7
http://tools.ietf.org/html/rfc5789#section-2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.7
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5
http://tools.ietf.org/html/rfc5789#section-2

PATCH /api/person/1

POST /api/person/1/relationships/comments

PATCH /api/person/1/relationships/comments

DELETE /api/person/1/relationships/comments

The last three allow the client to interact with the relationships of a particular resource.
The last two must be enabled explicitly by setting the allow_to_many_replacement
and allow_delete_from_to_many_relationships, respectively, to True when creating
an API using the APIManager.create_api() method.

5.2 API prefix

To create an API at a prefix other than the default /api, use the url_prefix keyword
argument:

apimanager.create_api(Person, url_prefix='/api/v2')

Then your API for Person will be available at /api/v2/person.

5.3 Collection name

By default, the name of the collection that appears in the URLs of the API will be the
name of the table that backs your model. If your model is a SQLAlchemy model, this
will be the value of its __table__.name attribute. If your model is a Flask-SQLAlchemy
model, this will be the lowercase name of the model with camel case changed to all-
lowercase with underscore separators. For example, a class named MyModel implies
a collection name of ’my_model’. Furthermore, the URL at which this collection is
accessible by default is /api/my_model.

To provide a different name for the model, provide a string to the collection_name key-
word argument of the APIManager.create_api() method:

apimanager.create_api(Person, collection_name='people')

Then the API will be exposed at /api/people instead of /api/person.

Note: According to the JSON API specification,

Note: This spec is agnostic about inflection rules, so the value of type can
be either plural or singular. However, the same value should be used con-
sistently throughout an implementation.

It’s up to you to make sure your collection names are either all plural or all singular!

48

http://jsonapi.org/format/#document-resource-object-identification

5.4 Specifying one of many primary keys

If your model has more than one primary key (one called id and one called username,
for example), you should specify the one to use:

manager.create_api(User, primary_key='username')

If you do this, Flask-Restless will create URLs like /api/user/myusername instead of
/api/user/123.

5.5 Enable bulk operations

Bulk operations via the JSON API Bulk extension are not yet supported.

5.6 Custom serialization

New in version 0.17.0.

Flask-Restless provides serialization and deserialization that work with the JSON API
specification. If you wish to have more control over the way instances of your mod-
els are converted to Python dictionary representations, you can specify a custom se-
rialization function by providing it to APIManager.create_api() via the serializer
keyword argument. Similarly, to provide a deserialization function that converts a
Python dictionary representation to an instance of your model, use the deserializer
keyword argument. However, if you provide a serializer that fails to produce resource
objects that satisfy the JSON API specification, your client will receive non-compliant
responses!

Define your serialization functions like this:

def serialize(instance, only=None):
return {'id': ..., 'type': ..., 'attributes': ...}

instance is an instance of a SQLAlchemy model and the only argument is a list; only
the fields (that is, the attributes and relationships) whose names appear as strings in
only should appear in the returned dictionary. The only exception is that the keys
’id’ and ’type’ must always appear, regardless of whether they appear in only. The
function must return a dictionary representation of the resource object.

To help with creating custom serialization functions, Flask-Restless provides a
simple_serialize() function, which returns the result of its basic, built-in serializa-
tion. Therefore, one way to customize your serialized objects is to do something like
this:

from flask.ext.restless import simple_serialize

def my_serializer(instance, only=None):

49

Get the default serialization of the instance.
result = simple_serialize(instance, only=only)
Make your changes here.
result['meta']['foo'] = 'bar'
Return the dictionary.
return result

You could also define a subclass of the DefaultSerializer class, override the
DefaultSerializer.__call__() method, and provide an instance of that class to the
serializer keyword argument.

For deserialization, define your custom deserialization function like this:

def deserialize(document):
return Person(...)

document is a dictionary representation of the complete incoming JSON API document,
where the data element contains the primary resource object. The function must return
an instance of the model that has the requested fields.

Note: If you wish to write your own serialization functions, we strongly suggest us-
ing a Python object serialization library instead of writing your own serialization func-
tions. This is also likely a better approach than specifying which columns to include
or exclude (Inclusion of related resources) or preprocessors and postprocessors (Request
preprocessors and postprocessors).

For example, if you create schema for your database models using Marshmallow, then
you use that library’s built-in serialization functions as follows:

class PersonSchema(Schema):
id = fields.Integer()
name = fields.String()

def make_object(self, data):
print('MAKING OBJECT FROM', data)
return Person(**data)

person_schema = PersonSchema()

def person_serializer(instance):
return person_schema.dump(instance).data

def person_deserializer(data):
return person_schema.load(data).data

manager = APIManager(app, session=session)
manager.create_api(Person, methods=['GET', 'POST'],

serializer=person_serializer,
deserializer=person_deserializer)

50

https://marshmallow.readthedocs.org

For a complete version of this example, see the
examples/server_configurations/custom_serialization.py module in the source
distribution, or view it online.

5.6.1 Per-model serialization

The correct serialization function will be used for each type of SQLAlchemy model
for which you invoke APIManager.create_api(). For example, if you create two APIs,
one for Person objects and one for Article objects,

manager.create_api(Person, serializer=person_serializer)
manager.create_api(Article, serializer=article_serializer)

and then make a request like

GET /api/article/1?include=author HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

then Flask-Restless will use the article_serializer function to serialize the pri-
mary data (that is, the top-level data element in the response document) and the
person_serializer to serialize the included Person resource.

5.7 Capturing validation errors

By default, no validation is performed by Flask-Restless; if you want validation, imple-
ment it yourself in your database models. However, by specifying a list of exceptions
raised by your backend on validation errors, Flask-Restless will forward messages
from raised exceptions to the client in an error response.

For example, if your validation framework includes an exception called
ValidationError, then call the APIManager.create_api() method with the
validation_exceptions keyword argument:

from cool_validation_framework import ValidationError
apimanager.create_api(Person, validation_exceptions=[ValidationError],

methods=['PATCH', 'POST'])

Note: Currently, Flask-Restless expects that an instance of a specified validation error
will have a errors attribute, which is a dictionary mapping field name to error de-
scription (note: one error per field). If you have a better, more general solution to this
problem, please visit our issue tracker.

Now when you make POST and PATCH requests with invalid fields, the JSON re-
sponse will look like this:

51

https://github.com/jfinkels/flask-restless/tree/master/examples/server_configurations/custom_serialization.py
https://github.com/jfinkels/flask-restless/issues
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5
http://tools.ietf.org/html/rfc5789#section-2

HTTP/1.1 400 Bad Request

{
"errors": [
{
"status": 400,
"title": "Validation error",
"detail": "age: must be an integer"

}
]

}

5.8 Request preprocessors and postprocessors

To apply a function to the request parameters and/or body before the request is pro-
cessed, use the preprocessors keyword argument. To apply a function to the response
data after the request is processed (immediately before the response is sent), use the
postprocessors keyword argument. Both preprocessors and postprocessors must be
a dictionary which maps HTTP method names as strings (with exceptions as described
below) to a list of functions. The specified functions will be applied in the order given
in the list.

There are many different routes on which you can apply preprocessors and postpro-
cessors, depending on HTTP method type, whether the client is accessing a resource
or a relationship, whether the client is accessing a collection or a single resource, etc.

This table states the preprocessors that apply to each type of endpoint.

preprocessor name applies to URLs like. . .
GET_COLLECTION /api/person
GET_RESOURCE /api/person/1
GET_RELATION /api/person/1/articles
GET_RELATED_RESOURCE /api/person/1/articles/2
DELETE_RESOURCE /api/person/1
POST_RESOURCE /api/person
PATCH_RESOURCE /api/person/1
GET_RELATIONSHIP /api/person/1/relationships/articles
DELETE_RELATIONSHIP /api/person/1/relationships/articles
POST_RELATIONSHIP /api/person/1/relationships/articles
PATCH_RELATIONSHIP /api/person/1/relationships/articles

This table states the postprocessors that apply to each type of endpoint.

52

postprocessor name applies to URLs like. . .
GET_COLLECTION /api/person
GET_RESOURCE /api/person/1
GET_TO_MANY_RELATION /api/person/1/articles
GET_TO_ONE_RELATION /api/articles/1/author
GET_RELATED_RESOURCE /api/person/1/articles/2
DELETE_RESOURCE /api/person/1
POST_RESOURCE /api/person
PATCH_RESOURCE /api/person/1
GET_TO_MANY_RELATIONSHIP /api/person/1/relationships/articles
GET_TO_ONE_RELATIONSHIP /api/articles/1/relationships/author
GET_RELATIONSHIP /api/person/1/relationships/articles
DELETE_RELATIONSHIP /api/person/1/relationships/articles
POST_RELATIONSHIP /api/person/1/relationships/articles
PATCH_RELATIONSHIP /api/person/1/relationships/articles

Each type of preprocessor or postprocessor requires different arguments. For prepro-
cessors:

preprocessor name keyword arguments
GET_COLLECTION filters, sort, group_by, single
GET_RESOURCE resource_id
GET_RELATION resource_id, relation_name, filters, sort,

group_by, single
GET_RELATED_RESOURCEresource_id, relation_name,

related_resource_id
DELETE_RESOURCE resource_id
POST_RESOURCE data
PATCH_RESOURCE resource_id, data
GET_RELATIONSHIP resource_id, relation_name
DELETE_RELATIONSHIPresource_id, relation_name
POST_RELATIONSHIP resource_id, relation_name, data
PATCH_RELATIONSHIP resource_id, relation_name, data

For postprocessors:

53

postprocessor name keyword arguments
GET_COLLECTION result, filters, sort, group_by, single
GET_RESOURCE result
GET_TO_MANY_RELATION result, filters, sort, group_by, single
GET_TO_ONE_RELATION result
GET_RELATED_RESOURCE result
DELETE_RESOURCE was_deleted
POST_RESOURCE result
PATCH_RESOURCE result
GET_TO_MANY_RELATIONSHIP result, filters, sort, group_by, single
GET_TO_ONE_RELATIONSHIP result
DELETE_RELATIONSHIP was_deleted
POST_RELATIONSHIP none
PATCH_RELATIONSHIP none

How can one use these tables to create a preprocessor or postprocessor? If you want to
create a preprocessor that will be applied on GET requests to /api/person, first define
a function that accepts the keyword arguments you need, and has a **kw argument
for any additional keyword arguments (and any new arguments that may appear in
future versions of Flask-Restless):

def fetch_preprocessor(filters=None, sort=None, group_by=None, single=None,
**kw):

Here perform any application-specific code...

Next, instruct these preprocessors to be applied by Flask-Restless by using the
preprocessors keyword argument to APIManager.create_api(). The value of this ar-
gument must be a dictionary in which each key is a string containing a processor name
and each value is a list of functions to be applied for that request:

preprocessors = {'GET_COLLECTION': [fetch_preprocessor]}
manager.create_api(Person, preprocessors=preprocessors)

For preprocessors for endpoints of the form /api/person/1, a returned value
will be interpreted as the resource ID for the request. (Remember, as de-
scribed in Resource ID must be a string, the returned ID must be a string.)
For example, if a preprocessor for a GET request to /api/person/1 returns the
string ’foo’, then Flask-Restless will behave as if the request were originally
for the URL /api/person/foo. For preprocessors for endpoints of the form
/api/person/1/articles or /api/person/1/relationships/articles, the function
can return either one value, in which case the resource ID will be replaced with
the return value, or a two-tuple, in which case both the resource ID and the rela-
tionship name will be replaced. Finally, for preprocessors for endpoints of the form
/api/person/1/articles/2, the function can return one, two, or three values; if three
values are returned, the resource ID, the relationship name, and the related resource
ID are all replaced. (If multiple preprocessors are specified for a single HTTP method
and each one has a return value, Flask-Restless will only remember the value returned
by the last preprocessor function.)

Those preprocessors and postprocessors that accept dictionaries as parameters can

54

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3

(and should) modify their arguments in-place. That means the changes made to, for
example, the result dictionary will be seen by the Flask-Restless view functions and
ultimately returned to the client.

Note: For more information about the filters and single keyword arguments, see
Filtering. For more information about sort and group_by keyword arguments, see
Sorting.

In order to halt the preprocessing or postprocessing and return an error response
directly to the client, your preprocessor or postprocessor functions can raise a
ProcessingException. If a function raises this exception, no preprocessing or post-
processing functions that appear later in the list specified when the API was created
will be invoked. For example, an authentication function can be implemented like
this:

def check_auth(resource_id=None, **kw):
Here, get the current user from the session.
current_user = ...
Next, check if the user is authorized to modify the specified
instance of the model.
if not is_authorized_to_modify(current_user, instance_id):

raise ProcessingException(detail='Not Authorized', status=401)
manager.create_api(Person, preprocessors=dict(GET_SINGLE=[check_auth]))

The ProcessingException allows you to specify as keyword arguments to the con-
structor the elements of the JSON API error object. If no arguments are provided, the
error is assumed to have status code 400 Bad Request.

5.8.1 Universal preprocessors and postprocessors

New in version 0.13.0.

The previous section describes how to specify a preprocessor or postprocessor on a
per-API (that is, a per-model) basis. If you want a function to be executed for all APIs
created by a APIManager, you can use the preprocessors or postprocessors keyword
arguments in the constructor of the APIManager class. These keyword arguments have
the same format as the corresponding ones in the APIManager.create_api() method
as described above. Functions specified in this way are prepended to the list of pre-
processors or postprocessors specified in the APIManager.create_api() method.

This may be used, for example, if all POST requests require authentication:

from flask import Flask
from flask.ext.restless import APIManager
from flask.ext.restless import ProcessingException
from flask.ext.login import current_user
from mymodels import User
from mymodels import session

55

https://jsonapi.org/format/#error-objects
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5

def auth_func(*args, **kw):
if not current_user.is_authenticated():

raise ProcessingException(detail='Not authenticated', status=401)

app = Flask(__name__)
preprocessors = {'POST_RESOURCE': [auth_func]}
api_manager = APIManager(app, session=session, preprocessors=preprocessors)
api_manager.create_api(User)

5.8.2 Preprocessors for collections

When the server receives, for example, a GET request for /api/person, Flask-Restless
interprets this request as a search with no filters (that is, a search for all instances of
Person without exception). In other words, a GET request to /api/person is roughly
equivalent to the same request to /api/person?filter[objects]=[]. Therefore, if you
want to filter the set of Person instances returned by such a request, you can create
a GET_COLLECTION preprocessor that appends filters to the filters keyword argument.
For example:

def preprocessor(filters=None, **kw):
This checks if the preprocessor function is being called before a
request that does not have search parameters.
if filters is None:

return
Create the filter you wish to add; in this case, we include only
instances with ``id`` not equal to 1.
filt = dict(name='id', op='neq', val=1)
Append your filter to the list of filters.
filters.append(filt)

preprocessors = {'GET_COLLECTION': [preprocessor]}
manager.create_api(Person, preprocessors=preprocessors)

5.9 Custom queries

In cases where it is not possible to use preprocessors or postprocessors (Request pre-
processors and postprocessors) efficiently, you can provide a custom query attribute
to your model instead. The attribute can either be a SQLAlchemy query expres-
sion or a class method that returns a SQLAlchemy query expression. Flask-Restless
will use this query attribute internally, however it is defined, instead of the default
session.query(Model) (in the pure SQLAlchemy case) or Model.query (in the Flask-
SQLAlchemy case). Flask-Restless uses a query during most GET and PATCH requests
to find the model(s) being requested.

You may want to use a custom query attribute if you want to reveal only certain in-
formation to the client. For example, if you have a set of people and you only want

56

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3
http://tools.ietf.org/html/rfc5789#section-2

to reveal information about people from the group named “students”, define a query
class method this way:

class Group(Base):
__tablename__ = 'group'
id = Column(Integer, primary_key=True)
groupname = Column(Unicode)
people = relationship('Person')

class Person(Base):
__tablename__ = 'person'
id = Column(Integer, primary_key=True)
group_id = Column(Integer, ForeignKey('group.id'))
group = relationship('Group')

@classmethod
def query(cls):

original_query = session.query(cls)
condition = (Group.groupname == 'students')
return original_query.join(Group).filter(condition)

Then GET requests to, for example, /api/person will only reveal instances of Person
who also are in the group named “students”.

5.9.1 Requiring authentication for some methods

If you want certain HTTP methods to require authentication, use preprocessors:

from flask import Flask
from flask.ext.restless import APIManager
from flask.ext.restless import ProcessingException
from flask.ext.login import current_user
from mymodels import User

def auth_func(*args, **kwargs):
if not current_user.is_authenticated():

raise ProcessingException(detail='Not authenticated', status=401)

app = Flask(__name__)
api_manager = APIManager(app)
Set `auth_func` to be a preprocessor for any type of endpoint you want to
be guarded by authentication.
preprocessors = {'GET_RESOURCE': [auth_func], ...}
api_manager.create_api(User, preprocessors=preprocessors)

For a more complete example using Flask-Login, see the
examples/server_configurations/authentication directory in the source distri-
bution, or view the authentication example online.

57

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3
https://packages.python.org/Flask-Login
https://github.com/jfinkels/flask-restless/tree/master/examples/server_configurations/authentication

58

Part II

API REFERENCE

A technical description of the classes, functions, and idioms of Flask-Restless.

59

60

CHAPTER 6

API

This part of the documentation documents all the public classes and functions in Flask-
Restless.

6.1 The API Manager class

class flask.ext.restless.APIManager(app=None, session=None,
flask_sqlalchemy_db=None, prepro-
cessors=None, postprocessors=None,
url_prefix=None)

Provides a method for creating a public ReSTful JSON API with respect to a
given Flask application object.

The Flask object can either be specified in the constructor, or after instantiation
time by calling the init_app() method.

app is the Flask object containing the user’s Flask application.

session is the Session object in which changes to the database will be made.

flask_sqlalchemy_db is the SQLAlchemy object with which app has been registered
and which contains the database models for which API endpoints will be created.

If flask_sqlalchemy_db is not None, session will be ignored.

For example, to use this class with models defined in pure SQLAlchemy:

from flask import Flask
from flask.ext.restless import APIManager
from sqlalchemy import create_engine
from sqlalchemy.orm.session import sessionmaker

engine = create_engine('sqlite:////tmp/mydb.sqlite')
Session = sessionmaker(bind=engine)
mysession = Session()

61

http://flask.pocoo.org/docs/api/#flask.Flask
http://flask.pocoo.org/docs/api/#flask.Flask
http://flask.pocoo.org/docs/api/#flask.Flask
http://sqlalchemy.org/docs/orm/session_api.html#sqlalchemy.orm.session.Session

app = Flask(__name__)
apimanager = APIManager(app, session=mysession)

and with models defined with Flask-SQLAlchemy:

from flask import Flask
from flask.ext.restless import APIManager
from flask.ext.sqlalchemy import SQLAlchemy

app = Flask(__name__)
db = SQLALchemy(app)
apimanager = APIManager(app, flask_sqlalchemy_db=db)

url_prefix is the URL prefix at which each API created by this instance will be ac-
cessible. For example, if this is set to ’foo’, then this method creates endpoints of
the form /foo/<collection_name> when create_api() is called. If the url_prefix
is set in the create_api(), the URL prefix set in the constructor will be ignored
for that endpoint.

postprocessors and preprocessors must be dictionaries as described in the section
Request preprocessors and postprocessors. These preprocessors and postprocessors
will be applied to all requests to and responses from APIs created using this API-
Manager object. The preprocessors and postprocessors given in these keyword
arguments will be prepended to the list of processors given for each individ-
ual model when using the create_api_blueprint() method (more specifically,
the functions listed here will be executed before any functions specified in the
create_api_blueprint() method). For more information on using preprocessors
and postprocessors, see Request preprocessors and postprocessors.

init_app(app)
Registers any created APIs on the given Flask application.

This function should only be called if no Flask application was provided in
the app keyword argument to the constructor of this class.

When this function is invoked, any blueprint created by a previous
invocation of create_api() will be registered on app by calling the
register_blueprint() method.

To use this method with pure SQLAlchemy, for example:

from flask import Flask
from flask.ext.restless import APIManager
from sqlalchemy import create_engine
from sqlalchemy.orm.session import sessionmaker

engine = create_engine('sqlite:////tmp/mydb.sqlite')
Session = sessionmaker(bind=engine)
mysession = Session()

Here create model classes, for example User, Comment, etc.
...

62

http://flask.pocoo.org/docs/api/#flask.Flask.register_blueprint

Create the API manager and create the APIs.
apimanager = APIManager(session=mysession)
apimanager.create_api(User)
apimanager.create_api(Comment)

Later, call `init_app` to register the blueprints for the
APIs created earlier.
app = Flask(__name__)
apimanager.init_app(app)

and with models defined with Flask-SQLAlchemy:

from flask import Flask
from flask.ext.restless import APIManager
from flask.ext.sqlalchemy import SQLAlchemy

db = SQLALchemy(app)

Here create model classes, for example User, Comment, etc.
...

Create the API manager and create the APIs.
apimanager = APIManager(flask_sqlalchemy_db=db)
apimanager.create_api(User)
apimanager.create_api(Comment)

Later, call `init_app` to register the blueprints for the
APIs created earlier.
app = Flask(__name__)
apimanager.init_app(app)

create_api(*args, **kw)
Creates and possibly registers a ReSTful API blueprint for the given
SQLAlchemy model.

If a Flask application was provided in the constructor of this class, the cre-
ated blueprint is immediately registered on that application. Otherwise,
the blueprint is stored for later registration when the init_app() method
is invoked. In that case, the blueprint will be registered each time the
init_app() method is invoked.

The keyword arguments for this method are exactly the same as those for
create_api_blueprint(), and are passed directly to that method. However,
unlike that method, this method accepts only a single positional argument,
model, the SQLAlchemy model for which to create the API. A UUID will be
automatically generated for the blueprint name.

For example, if you only wish to create APIs on a single Flask application:

app = Flask(__name__)
session = ... # create the SQLAlchemy session

63

manager = APIManager(app=app, session=session)
manager.create_api(User)

If you want to create APIs before having access to a Flask application, you
can call this method before calling init_app():

session = ... # create the SQLAlchemy session
manager = APIManager(session=session)
manager.create_api(User)

later...
app = Flask(__name__)
manager.init_app(app)

If you want to create an API and register it on multiple Flask applications,
you can call this method once and init_app() multiple times with different
app arguments:

session = ... # create the SQLAlchemy session
manager = APIManager(session=session)
manager.create_api(User)

later...
app1 = Flask('application1')
app2 = Flask('application2')
manager.init_app(app1)
manager.init_app(app2)

create_api_blueprint(name, model, methods=frozenset({‘GET’}),
url_prefix=None, collection_name=None, al-
low_functions=False, only=None, exclude=None, addi-
tional_attributes=None, validation_exceptions=None,
page_size=10, max_page_size=100, prepro-
cessors=None, postprocessors=None, pri-
mary_key=None, serializer=None, deserializer=None,
includes=None, allow_to_many_replacement=False,
allow_delete_from_to_many_relationships=False,
allow_client_generated_ids=False)

Creates and returns a ReSTful API interface as a blueprint, but does not
register it on any flask.Flask application.

The endpoints for the API for model will be available at
<url_prefix>/<collection_name>. If collection_name is None, the low-
ercase name of the provided model class will be used instead, as ac-
cessed by model.__table__.name. (If any black magic was performed on
model.__table__, this will be reflected in the endpoint URL.) For more
information, see Collection name.

This function must be called at most once for each model for which you
wish to create a ReSTful API. Its behavior (for now) is undefined if called
more than once.

64

http://flask.pocoo.org/docs/api/#flask.Flask

This function returns the flask.Blueprint object that handles the endpoints
for the model. The returned Blueprint has not been registered with the
Flask application object specified in the constructor of this class, so you
will need to register it yourself to make it available on the application. If
you don’t need access to the Blueprint object, use create_api_blueprint()
instead, which handles registration automatically.

name is the name of the blueprint that will be created.

model is the SQLAlchemy model class for which a ReSTful interface will be
created.

app is the Flask object on which we expect the blueprint created in this
method to be eventually registered. If not specified, the Flask application
specified in the constructor of this class is used.

methods is a list of strings specifying the HTTP methods that will be made
available on the ReSTful API for the specified model.

•If ’GET’ is in the list, GET requests will be allowed at endpoints for
collections of resources, resources, to-many and to-one relations of re-
sources, and particular members of a to-many relation. Furthermore,
relationship information will be accessible. For more information, see
Fetching resources and relationships.

•If ’POST’ is in the list, POST requests will be allowed at endpoints for
collections of resources. For more information, see Creating resources.

•If ’DELETE’ is in the list, DELETE requests will be allowed at endpoints
for individual resources. For more information, see Deleting resources.

•If ’PATCH’ is in the list, PATCH requests will be allowed at end-
points for individual resources. Replacing a to-many relationship
when issuing a request to update a resource can be enabled by setting
allow_to_many_replacement to True.

Furthermore, to-one relationships can be updated at the relation-
ship endpoints under an individual resource via PATCH requests.
This also allows you to add to a to-many relationship via the
POST method, delete from a to-many relationship via the DELETE
method (if allow_delete_from_to_many_relationships is set to True),
and replace a to-many relationship via the PATCH method (if
allow_to_many_replacement is set to True). For more information, see
Updating resources and Updating relationships.

The default set of methods provides a read-only interface (that is, only GET
requests are allowed).

url_prefix is the URL prefix at which this API will be accessible. For exam-
ple, if this is set to ’/foo’, then this method creates endpoints of the form
/foo/<collection_name>. If not set, the default URL prefix specified in the
constructor of this class will be used. If that was not set either, the default
’/api’ will be used.

65

http://flask.pocoo.org/docs/api/#flask.Blueprint
http://flask.pocoo.org/docs/api/#flask.Blueprint
http://flask.pocoo.org/docs/api/#flask.Flask
http://flask.pocoo.org/docs/api/#flask.Blueprint
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.7
http://tools.ietf.org/html/rfc5789#section-2
http://tools.ietf.org/html/rfc5789#section-2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.7
http://tools.ietf.org/html/rfc5789#section-2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3

collection_name is the name of the collection specified by the given model
class to be used in the URL for the ReSTful API created. If this is not spec-
ified, the lowercase name of the model will be used. For example, if this
is set to ’foo’, then this method creates endpoints of the form /api/foo,
/api/foo/<id>, etc.

If allow_functions is True, then GET requests to
/api/eval/<collection_name> will return the result of evaluating SQL
functions specified in the body of the request. For information on the
request format, see Function evaluation. This is False by default.

Warning: If allow_functions is True, you must not create an API for a
model whose name is ’eval’.

If only is not None, it must be a list of columns and/or relationships of the
specified model, given either as strings or as the attributes themselves. If it
is a list, only these fields will appear in the resource object representation
of an instance of model. In other words, only is a whitelist of fields. The id
and type elements of the resource object will always be present regardless
of the value of this argument. If only contains a string that does not name a
column in model, it will be ignored.

If additional_attributes is a list of strings, these attributes of the model will
appear in the JSON representation of an instance of the model. This is useful
if your model has an attribute that is not a SQLAlchemy column but you
want it to be exposed. If any of the attributes does not exist on the model, a
AttributeError is raised.

If exclude is not None, it must be a list of columns and/or relationships of the
specified model, given either as strings or as the attributes themselves. If it is
a list, all fields except these will appear in the resource object representation
of an instance of model. In other words, exclude is a blacklist of fields. The id
and type elements of the resource object will always be present regardless
of the value of this argument. If exclude contains a string that does not name
a column in model, it will be ignored.

If either only or exclude is not None, exactly one of them must be specified; if
both are not None, then this function will raise a IllegalArgumentError.

See Specifying which fields appear in responses for more information on speci-
fying which fields will be included in the resource object representation.

validation_exceptions is the tuple of possible exceptions raised by validation
of your database models. If this is specified, validation errors will be cap-
tured and forwarded to the client in the format described by the JSON API
specification. For more information on how to use validation, see Capturing
validation errors.

page_size must be a positive integer that represents the default page size for
responses that consist of a collection of resources. Requests made by clients
may override this default by specifying page_size as a query parameter.
max_page_size must be a positive integer that represents the maximum page

66

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3

size that a client can request. Even if a client specifies that greater than
max_page_size should be returned, at most max_page_size results will be re-
turned. For more information, see Pagination.

serializer and deserializer are custom serialization functions. The former func-
tion must take a single positional argument representing the instance of the
model to serialize and an additional keyword argument only representing
the fields to include in the serialized representation of the instance, and
must return a dictionary representation of that instance. The latter func-
tion must take a single argument representing the dictionary representation
of an instance of the model and must return an instance of model that has
those attributes. For more information, see Custom serialization.

preprocessors is a dictionary mapping strings to lists of functions. Each
key represents a type of endpoint (for example, ’GET_RESOURCE’ or
’GET_COLLECTION’). Each value is a list of functions, each of which will be
called before any other code is executed when this API receives the corre-
sponding HTTP request. The functions will be called in the order given
here. The postprocessors keyword argument is essentially the same, except
the given functions are called after all other code. For more information on
preprocessors and postprocessors, see Request preprocessors and postproces-
sors.

primary_key is a string specifying the name of the column of model to use as
the primary key for the purposes of creating URLs. If the model has exactly
one primary key, there is no need to provide a value for this. If model has
two or more primary keys, you must specify which one to use. For more
information, see Specifying one of many primary keys.

includes must be a list of strings specifying which related resources will be
included in a compound document by default when fetching a resource ob-
ject representation of an instance of model. Each element of includes is the
name of a field of model (that is, either an attribute or a relationship). For
more information, see Inclusion of related resources.

If allow_to_many_replacement is True and this API allows PATCH requests,
the server will allow two types of requests. First, it allows the client to
replace the entire collection of resources in a to-many relationship when
updating an individual instance of the model. Second, it allows the client
to replace the entire to-many relationship when making a PATCH request
to a to-many relationship endpoint. This is False by default. For more
information, see Updating resources and Updating relationships.

If allow_delete_from_to_many_relationships is True and this API allows
PATCH requests, the server will allow the client to delete resources from
any to-many relationship of the model. This is False by default. For more
information, see Updating relationships.

If allow_client_generated_ids is True and this API allows POST requests, the
server will allow the client to specify the ID for the resource to create. JSON
API recommends that this be a UUID. This is False by default. For more

67

http://tools.ietf.org/html/rfc5789#section-2
http://tools.ietf.org/html/rfc5789#section-2
http://tools.ietf.org/html/rfc5789#section-2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5

information, see Creating resources.

6.2 Global helper functions

flask.ext.restless.collection_name(model, _apimanager=None)
Returns the collection name for the specified model, as specified by the
collection_name keyword argument to APIManager.create_api() when it was
previously invoked on the model.

model is a SQLAlchemy model class. This should be a model on which
APIManager.create_api_blueprint() (or APIManager.create_api()) has been
invoked previously. If no API has been created for it, this function raises a Val-
ueError.

If _apimanager is not None, it must be an instance of APIManager. Restrict our
search for endpoints exposing model to only endpoints created by the specified
APIManager instance.

For example, suppose you have a model class Person and have created the ap-
propriate Flask application and SQLAlchemy session:

>>> from mymodels import Person
>>> manager = APIManager(app, session=session)
>>> manager.create_api(Person, collection_name='people')
>>> collection_name(Person)
'people'

This function is the inverse of model_for():

>>> manager.collection_name(manager.model_for('people'))
'people'
>>> manager.model_for(manager.collection_name(Person))
<class 'mymodels.Person'>

flask.ext.restless.model_for(collection_name, _apimanager=None)
Returns the model corresponding to the given collection name, as specified by
the collection_name keyword argument to APIManager.create_api() when it
was previously invoked on the model.

collection_name is a string corresponding to the “type” of a model.
This should be a model on which APIManager.create_api_blueprint() (or
APIManager.create_api()) has been invoked previously. If no API has been cre-
ated for it, this function raises a ValueError.

If _apimanager is not None, it must be an instance of APIManager. Restrict our
search for endpoints exposing model to only endpoints created by the specified
APIManager instance.

For example, suppose you have a model class Person and have created the ap-
propriate Flask application and SQLAlchemy session:

68

>>> from mymodels import Person
>>> manager = APIManager(app, session=session)
>>> manager.create_api(Person, collection_name='people')
>>> model_for('people')
<class 'mymodels.Person'>

This function is the inverse of collection_name():

>>> manager.collection_name(manager.model_for('people'))
'people'
>>> manager.model_for(manager.collection_name(Person))
<class 'mymodels.Person'>

flask.ext.restless.serializer_for(model, _apimanager=None)
Returns the callable serializer object for the specified model, as specified by
the serializer keyword argument to APIManager.create_api() when it was pre-
viously invoked on the model.

model is a SQLAlchemy model class. This should be a model on which
APIManager.create_api_blueprint() (or APIManager.create_api()) has been
invoked previously. If no API has been created for it, this function raises a Val-
ueError.

If _apimanager is not None, it must be an instance of APIManager. Restrict our
search for endpoints exposing model to only endpoints created by the specified
APIManager instance.

For example, suppose you have a model class Person and have created the ap-
propriate Flask application and SQLAlchemy session:

>>> from mymodels import Person
>>> def my_serializer(model, *args, **kw):
... # return something cool here...
... return {}
...
>>> manager = APIManager(app, session=session)
>>> manager.create_api(Person, serializer=my_serializer)
>>> serializer_for(Person)
<function my_serializer at 0x...>

flask.ext.restless.primary_key_for(model, _apimanager=None)
Returns the primary key to be used for the given model or model instance, as
specified by the primary_key keyword argument to APIManager.create_api()
when it was previously invoked on the model.

primary_key is a string corresponding to the primary key identifier to be
used by flask-restless for a model. If no primary key has been set at the
flask-restless level (by using the primary_key keyword argument when calling
APIManager.create_api_blueprint(), the model’s primary key will be returned.
If no API has been created for the model, this function raises a ValueError.

If _apimanager is not None, it must be an instance of APIManager. Restrict our

69

search for endpoints exposing model to only endpoints created by the specified
APIManager instance.

For example, suppose you have a model class Person and have created the ap-
propriate Flask application and SQLAlchemy session:

>>> from mymodels import Person
>>> manager = APIManager(app, session=session)
>>> manager.create_api(Person, primary_key='name')
>>> primary_key_for(Person)
'name'
>>> my_person = Person(name="Bob")
>>> primary_key_for(my_person)
'name'

This is in contrast to the typical default:

>>> manager = APIManager(app, session=session)
>>> manager.create_api(Person)
>>> primary_key_for(Person)
'id'

flask.ext.restless.url_for(model, instid=None, relationname=None, relationin-
stid=None, _apimanager=None, **kw)

Returns the URL for the specified model, similar to flask.url_for().

model is a SQLAlchemy model class. This should be a model on which
APIManager.create_api_blueprint() (or APIManager.create_api()) has been
invoked previously. If no API has been created for it, this function raises a Val-
ueError.

If _apimanager is not None, it must be an instance of APIManager. Restrict our
search for endpoints exposing model to only endpoints created by the specified
APIManager instance.

The resource_id, relation_name, and relationresource_id keyword arguments allow
you to get the URL for a more specific sub-resource.

For example, suppose you have a model class Person and have created the ap-
propriate Flask application and SQLAlchemy session:

>>> manager = APIManager(app, session=session)
>>> manager.create_api(Person, collection_name='people')
>>> url_for(Person, resource_id=3)
'http://example.com/api/people/3'
>>> url_for(Person, resource_id=3, relation_name=computers)
'http://example.com/api/people/3/computers'
>>> url_for(Person, resource_id=3, relation_name=computers, related_resource_id=9)
'http://example.com/api/people/3/computers/9'

If a resource_id and a relation_name are provided, and you wish to determine the
relationship endpoint URL instead of the related resource URL, set the relation-
ship keyword argument to True:

70

http://flask.pocoo.org/docs/api/#flask.url_for

>>> url_for(Person, resource_id=3, relation_name=computers, relationshi=True)
'http://example.com/api/people/3/relatonships/computers'

The remaining keyword arguments, kw, are passed directly on to
flask.url_for().

Since this function creates absolute URLs to resources linked to the given in-
stance, it must be called within a Flask request context.

6.3 Serialization helpers

flask.ext.restless.simple_serialize(instance, only=None)
Provides basic, uncustomized serialization functionality as provided by
DefaultSerializer.

This function is suitable for calling on its own, no other instantiation or cus-
tomization necessary.

class flask.ext.restless.Serializer
An object that, when called, returns a dictionary representation of a given in-
stance of a SQLAlchemy model.

This is a base class with no implementation.

class flask.ext.restless.Deserializer(session, model)
An object that, when called, returns an instance of the SQLAlchemy model spec-
ified at instantiation time.

session is the SQLAlchemy session in which to look for any related resources.

model is the class of which instances will be created by the __call__() method.

This is a base class with no implementation.

class flask.ext.restless.SerializationException(instance, message=None, re-
source=None, *args, **kw)

Raised when there is a problem serializing an instance of a SQLAlchemy model
to a dictionary representation.

instance is the (problematic) instance on which Serializer.__call__() was in-
voked.

message is an optional string describing the problem in more detail.

resource is an optional partially-constructed serialized representation of
instance.

Each of these keyword arguments is stored in a corresponding instance attribute
so client code can access them.

71

http://flask.pocoo.org/docs/api/#flask.url_for
http://flask.pocoo.org/docs/0.10/reqcontext/

class flask.ext.restless.DeserializationException(*args, **kw)
Raised when there is a problem deserializing a Python dictionary to an instance
of a SQLAlchemy model.

Subclasses that wish to provide more detailed about the problem should set the
detail attribute to be a string, either as a class-level attribute or as an instance
attribute.

6.4 Pre- and postprocessor helpers

class flask.ext.restless.ProcessingException(id_=None, links=None, sta-
tus=400, code=None, ti-
tle=None, detail=None,
source=None, meta=None,
*args, **kw)

Raised when a preprocessor or postprocessor encounters a problem.

This exception should be raised by functions supplied in the preprocessors and
postprocessors keyword arguments to APIManager.create_api. When this ex-
ception is raised, all preprocessing or postprocessing halts, so any processors
appearing later in the list will not be invoked.

The keyword arguments id_, href status, code, title, detail, links, paths cor-
respond to the elements of the JSON API error object; the values of these key-
word arguments will appear in the error object returned to the client.

Any additional positional or keyword arguments are supplied directly to the
superclass, werkzeug.exceptions.HTTPException.

72

Part III

ADDITIONAL INFORMATION

Meta-information on Flask-Restless.

73

74

CHAPTER 7

Similar projects

If Flask-Restless doesn’t work for you, here are some similar Python packages that in-
tend to simplify the creation of ReSTful APIs (in various combinations of Web frame-
works and database backends):

• Eve

• Flask-Peewee

• Flask-RESTful

• simpleapi

• Tastypie

• Django REST framework

• Restless

75

http://python-eve.org
https://flask-peewee.readthedocs.org
https://flask-restful.readthedocs.org
https://simpleapi.readthedocs.org
https://django-tastypie.readthedocs.org
http://www.django-rest-framework.org
https://restless.readthedocs.org

76

CHAPTER 8

Copyright and license

Flask-Restless is copyright 2011 Lincoln de Sousa and copyright 2012, 2013, 2014, 2015,
2016 Jeffrey Finkelstein and contributors, and is dual-licensed under the following two
copyright licenses:

• the GNU Affero General Public License, either version 3 or (at your option) any
later version

• the 3-clause BSD License

For more information, see the files LICENSE.AGPL and LICENSE.BSD in top-level direc-
tory of the source distribution.

The artwork for Flask-Restless is copyright 2012 Jeffrey Finkelstein. The couch logo is
licensed under the Creative Commons Attribute-ShareAlike 4.0 license. The original
image is a scan of a (now public domain) illustration by Arthur Hopkins in a serial
edition of “The Return of the Native” by Thomas Hardy published in October 1878.
The couch logo with the “Flask-Restless” text is licensed under the Flask Artwork
License.

The documentation is licensed under the Creative Commons Attribute-ShareAlike 4.0
license.

77

http://fsf.org/licenses/agpl.html
http://creativecommons.org/licenses/by-sa/4.0
http://flask.pocoo.org/docs/license/#flask-artwork-license
http://flask.pocoo.org/docs/license/#flask-artwork-license
http://creativecommons.org/licenses/by-sa/4.0
http://creativecommons.org/licenses/by-sa/4.0

78

CHAPTER 9

Changelog

Here you can see the full list of changes between each Flask-Restless release. Version
1.0.0 saw a major overhaul of Flask-Restless to make it compliant with JSON API, so
changes from prior versions may not be relevant to more recent versions.

Numbers following a pound sign (#) refer to GitHub issues.

9.1 Version 1.0.0b1

This is a beta release; these changes will appear in the 1.0.0 release.

Released on April 2, 2016.

• #255: adds support for filtering by PostgreSQL network operators.

• #257: ensures additional attributes specified by the user actually exist on the
model.

• #363 (partial solution): don’t use COUNT on requests that don’t require pagination.

• #404: Major overhaul of Flask-Restless to support JSON API.

• Increases minimum version requirement for python-dateutil to be strictly
greater than 2.2 to avoid parsing bug.

• #331, #415: documents the importance of URL encoding when using the like
operator to filter results.

• #376: add a not_like operator for filter objects.

• #431: adds a url_prefix keyword argument to the APIManager constructor, so
one can specify a URL prefix once for all created APIs.

• #449: roll back the session on any SQLAlchemy error, not just a few.

• #432, #462: alias relation names when sorting by multiple attributes on a rela-
tionship.

79

https://github.com/jfinkels/flask-restless/issues

• #436, #453: use __table__.name instead of __tablename__ to infer the collection
name for the SQLAlchemy model.

• #440, #475: uses the serialization function provided at the time of invoking
APIManager.create_api() to serialize each resource correctly, depending on its
type.

• #474: include license files in built wheel for distribution.

• #501: allows empty string for url_prefix keyword argument to
APIManager.create_api().

• #476: use the primary key provided at the time of invoking
APIManager.create_api() to build resource urls in responses.

9.2 Older versions

Note: As of version 0.13.0, Flask-Restless supports Python 2.6, 2.7, and 3. Before that,
it supported Python 2.5, 2.6, and 2.7.

Note: As of version 0.6, Flask-Restless supports both pure SQLAlchemy and Flask-
SQLAlchemy models. Before that, it supported only Elixir models.

9.2.1 Version 0.17.0

Released on February 17, 2015.

• Corrects bug to allow delayed initialization of multiple Flask applications.

• #167: allows custom serialization/deserialization functions.

• #198: allows arbitrary Boolean expressions in search query filters.

• #226: allows creating APIs before initializing the Flask application object.

• #274: adds the url_for() function for computing URLs from models.

• #379: improves datetime parsing in search requests.

• #398: fixes bug where DELETE_SINGLE processors were not actually used.

• #400: disallows excluding a primary key on a POST request.

9.2.2 Version 0.16.0

Released on February 3, 2015.

80

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5

• #237: allows bulk delete of model instances via the allow_delete_many keyword
argument.

• #313, #389: APIManager.init_app() now can be correctly used to initialize mul-
tiple Flask applications.

• #327, #391: allows ordering searches by fields on related instances.

• #353: allows search queries to specify group_by directives.

• #365: allows preprocessors to specify return values on GET requests.

• #385: makes the include_methods keywords argument respect model properties.

9.2.3 Version 0.15.1

Released on January 2, 2015.

• #367: catch IntegrityError, DataError, and ProgrammingError exceptions in all
view methods.

• #374: import sqlalchemy.Column from sqlalchemy directly, instead of
sqlalchemy.sql.schema

9.2.4 Version 0.15.0

Released on October 30, 2014.

• #320: detect settable hybrid properties instead of raising an exception.

• #350: allows exclude/include columns to be specified as SQLAlchemy column
objects in addition to strings.

• #356: rollback the SQLAlchemy session on a failed PATCH request.

• #368: adds missing documentation on using custom queries (see Custom queries)

9.2.5 Version 0.14.2

Released on September 2, 2014.

• #351, #355: fixes bug in getting related models from a model with hybrid prop-
erties.

9.2.6 Version 0.14.1

Released on August 26, 2014.

• #210: lists some related projects in the documentation.

• #347: adds automated build testing for PyPy 3.

81

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3
http://tools.ietf.org/html/rfc5789#section-2

• #354: renames is_deleted to was_deleted when providing keyword arguments
to postprocessor for DELETE method in order to match documentation.

9.2.7 Version 0.14.0

Released on August 12, 2014.

• Fixes bug where primary key specified by user was not being checked in some
POST requests and some search queries.

• #223: documents CORS example.

• #280: don’t expose raw SQL in responses on database errors.

• #299: show error message if search query tests for NULL using comparison opera-
tors.

• #315: check for query object being None.

• #324: DELETE should only return 204 No Content if something is actuall deleted.

• #325: support null inside has search operators.

• #328: enable automatic testing for Python 3.4.

• #333: enforce limit in helpers.count().

• #338: catch validation exceptions when attempting to update relations.

• #339: use user-specified primary key on PATCH requests.

• #344: correctly encodes Unicode fields in responses.

9.2.8 Version 0.13.1

Released on April 21, 2014.

• #304: fixes mimerender bug due to how Python 3.4 handles decorators.

9.2.9 Version 0.13.0

Released on April 6, 2014.

• Allows universal preprocessors or postprocessors; see Universal preprocessors and
postprocessors.

• Allows specifying which primary key to use when creating endpoint URLs.

• Requires SQLAlchemy version 0.8 or greater.

• #17: use Flask’s flask.Request.json to parse incoming JSON requests.

• #29: replace custom jsonify_status_code function with built-in support for
return jsonify(), status_code style return statements (new in Flask 0.9).

82

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.7
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.7
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://tools.ietf.org/html/rfc5789#section-2
http://flask.pocoo.org/docs/api/#flask.Request.json

• #51: Use mimerender to render dictionaries to JSON format.

• #247: adds support for making POST requests to dictionary-like association
proxies.

• #249: returns 404 Not Found if a search reveals no matching results.

• #254: returns 404 Not Found if no related field exists for a request with a related
field in the URL.

• #256: makes search parameters available to postprocessors for GET and PATCH
requests that access multiple resources.

• #263: Adds Python 3.3 support; drops Python 2.5 support.

• #267: Adds compatibility for legacy Microsoft Internet Explorer versions 8 and
9.

• #270: allows the query attribute on models to be a callable.

• #282: order responses by primary key if no order is specified.

• #284: catch DataError and ProgrammingError exceptions when bad data are sent
to the server.

• #286: speed up paginated responses by using optimized count() function.

• #293: allows sqlalchemy.Time fields in JSON responses.

9.2.10 Version 0.12.1

Released on December 1, 2013.

• #222: on POST and PATCH requests, recurse into nested relations to get or create
instances of related models.

• #246: adds pysqlite to test requirements.

• #260: return a single object when making a GET request to a relation sub-URL.

• #264: all methods now execute postprocessors after setting headers.

• #265: convert strings to dates in related models when making POST requests.

9.2.11 Version 0.12.0

Released on August 8, 2013.

• #188: provides metadata as well as normal data in JSONP responses.

• #193: allows DELETE requests to related instances.

• #215: removes Python 2.5 tests from Travis configuration.

• #216: don’t resolve Query objects until pagination function.

• #217: adds missing indices in format string.

83

http://mimerender.readthedocs.org
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3
http://tools.ietf.org/html/rfc5789#section-2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5
http://tools.ietf.org/html/rfc5789#section-2
https://pypi.python.org/pypi/pysqlite
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.7

• #220: fix bug when checking attributes on a hybrid property.

• #227: allows client to request that the server use the current date and/or time
when setting the value of a field.

• #228 (as well as #212, #218, #231): fixes issue due to a module removed from
Flask version 0.10.

9.2.12 Version 0.11.0

Released on May 18, 2013.

• Requests that require a body but don’t have Content-Type: application/json
will cause a 415 Unsupported Media Type response.

• Responses now have Content-Type: application/json.

• #180: allow more expressive has and any searches.

• #195: convert UUID objects to strings when converting an instance of a model to
a dictionary.

• #202: allow setting hybrid properties with expressions and setters.

• #203: adds the include_methods keyword argument to
APIManager.create_api(), which allows JSON responses to include the re-
sult of calling arbitrary methods of instances of models.

• #204, 205: allow parameters in Content-Type header.

9.2.13 Version 0.10.1

Released on May 8, 2013.

• #115: change assertEqual() methods to assert statements in tests.

• #184, #186: Switch to nose for testing.

• #197: documents technique for adding filters in processors when there are none
initially.

9.2.14 Version 0.10.0

Released on April 30, 2013.

• #2: adds basic GET access to one level of relationship depth for models.

• #113: interpret empty strings for date fields as None objects.

• #115: use Python’s built-in assert statements for testing

• #128: allow disjunctions when filtering search queries.

• #130: documentation and examples now more clearly show search examples.

84

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.16
http://nose.readthedocs.org
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3

• #135: added support for hybrid properties.

• #139: remove custom code for authentication in favor of user-defined pre- and
postprocessors (this supercedes the fix from #154).

• #141: relax requirement for version of python-dateutil to be not equal to 2.0 if
using Python version 2.6 or 2.7.

• #146: preprocessors now really execute before other code.

• #148: adds support for SQLAlchemy association proxies.

• #154 (this fix is irrelevant due to #139): authentication function now may raise an
exception instead of just returning a Boolean.

• #157: POST requests now receive a response containing all fields of the created
instance.

• #162: allow pre- and postprocessors to indicate that no change has occurred.

• #164, #172, and #173: PATCH requests update fields on related instances.

• #165: fixed bug in automatic exposing of URLs for related instances.

• #170: respond with correct HTTP status codes when a query for a single instance
results in none or multiple instances.

• #174: allow dynamically loaded relationships for automatically exposed URLs
of related instances.

• #176: get model attribute instead of column name when getting name of primary
key.

• #182: allow POST requests that set hybrid properties.

• #152: adds some basic server-side logging for exceptions raised by views.

9.2.15 Version 0.9.3

Released on February 4, 2013.

• Fixes incompatibility with Python 2.5 try/except syntax.

• #116: handle requests which raise IntegrityError.

9.2.16 Version 0.9.2

Released on February 4, 2013.

• #82, #134, #136: added request pre- and postprocessors.

• #120: adds support for JSON-P callbacks in GET requests.

85

http://labix.org/python-dateutil
http://docs.sqlalchemy.org/en/latest/orm/extensions/associationproxy.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5
http://tools.ietf.org/html/rfc5789#section-2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5
http://sqlalchemy.org/docs/core/exceptions.html#sqlalchemy.exc.IntegrityError
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3

9.2.17 Version 0.9.1

Released on January 17, 2013.

• #126: fix documentation build failure due to bug in a dependency.

• #127: added “ilike” query operator.

9.2.18 Version 0.9.0

Released on January 16, 2013.

• Removed ability to provide a Session class when initializing APIManager; pro-
vide an instance of the class instead.

• Changes some dynamically loaded relationships used for testing and in ex-
amples to be many-to-one instead of the incorrect one-to-many. Versions of
SQLAlchemy after 0.8.0b2 raise an exception when the latter is used.

• #105: added ability to set a list of related model instances on a model.

• #107: server responds with an error code when a PATCH or POST request speci-
fies a field which does not exist on the model.

• #108: dynamically loaded relationships should now be rendered correctly by the
views._to_dict() function regardless of whether they are a list or a single object.

• #109: use sphinxcontrib-issuetracker to render links to GitHub issues in docu-
mentation.

• #110: enable results_per_page query parameter for clients, and added
max_results_per_page keyword argument to APIManager.create_api().

• #114: fix bug where string representations of integers were converted to integers.

• #117: allow adding related instances on PATCH requests for one-to-one relation-
ships.

• #123: PATCH requests to instances which do not exist result in a 404 Not Found
response.

9.2.19 Version 0.8.0

Released on November 19, 2012.

• #94: views._to_dict() should return a single object instead of a list when resolv-
ing dynamically loaded many-to-one relationships.

• #104: added num_results key to paginated JSON responses.

86

http://sqlalchemy.org/docs/orm/session_api.html#sqlalchemy.orm.session.Session
http://tools.ietf.org/html/rfc5789#section-2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5
https://sphinxcontrib-issuetracker.readthedocs.org/en/latest
http://tools.ietf.org/html/rfc5789#section-2
http://tools.ietf.org/html/rfc5789#section-2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

9.2.20 Version 0.7.0

Released on October 9, 2012.

• Added working include and exclude functionality to the views._to_dict()
function.

• Added exclude_columns keyword argument to APIManager.create_api().

• #79: attempted to access attribute of None in constructor of APIManager.

• #83: allow POST requests with one-to-one related instances.

• #86: allow specifying include and exclude for related models.

• #91: correctly handle POST requests to nullable DateTime columns.

• #93: Added a total_pages mapping to the JSON response.

• #98: GET requests to the function evaluation endpoint should not have a data
payload.

• #101: exclude in views._to_dict() function now correctly excludes requested
fields from the returned dictionary.

9.2.21 Version 0.6

Released on June 20, 2012.

• Added support for accessing model instances via arbitrary primary keys, instead
of requiring an integer column named id.

• Added example which uses curl as a client.

• Added support for pagination of responses.

• Fixed issue due to symbolic link from README to README.md when running pip
bundle foobar Flask-Restless.

• Separated API blueprint creation from registration, using
APIManager.create_api() and APIManager.create_api_blueprint().

• Added support for pure SQLAlchemy in addition to Flask-SQLAlchemy.

• #74: Added post_form_preprocessor keyword argument to
APIManager.create_api().

• #77: validation errors are now correctly handled on PATCH requests.

9.2.22 Version 0.5

Released on April 10, 2012.

• Dual-licensed under GNU AGPLv3+ and 3-clause BSD license.

• Added capturing of exceptions raised during field validation.

87

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3
http://tools.ietf.org/html/rfc5789#section-2

• Added examples/separate_endpoints.py, showing how to create separate API
endpoints for a single model.

• Added include_columns keyword argument to create_api() method to allow
users to specify which columns of the model are exposed in the API.

• Replaced Elixir with Flask-SQLAlchemy. Flask-Restless now only supports
Flask-SQLAlchemy.

9.2.23 Version 0.4

Released on March 29, 2012.

• Added Python 2.5 and Python 2.6 support.

• Allow users to specify which HTTP methods for a particular API will require
authentication and how that authentication will take place.

• Created base classes for test cases.

• Moved the evaluate_functions function out of the flask_restless.search
module and corrected documentation about how function evaluation works.

• Added allow_functions keyword argument to create_api().

• Fixed bug where we weren’t allowing PUT requests in create_api().

• Added collection_name keyword argument to create_api() to allow user pro-
vided names in URLs.

• Added allow_patch_many keyword argument to create_api() to allow enabling
or disabling the PATCH many functionality.

• Disable the PATCH many functionality by default.

9.2.24 Version 0.3

Released on March 4, 2012.

• Initial release in Flask extension format.

88

Index

A
APIManager (class in flask.ext.restless), 61

C
collection_name() (in module

flask.ext.restless), 68
create_api() (flask.ext.restless.APIManager

method), 63
create_api_blueprint()

(flask.ext.restless.APIManager
method), 64

D
DeserializationException (class in

flask.ext.restless), 71
Deserializer (class in flask.ext.restless), 71

F
flask.ext.restless (module), 61

I
init_app() (flask.ext.restless.APIManager

method), 62

M
model_for() (in module flask.ext.restless),

68

P
primary_key_for() (in module

flask.ext.restless), 69
ProcessingException (class in

flask.ext.restless), 72

S
SerializationException (class in

flask.ext.restless), 71
Serializer (class in flask.ext.restless), 71
serializer_for() (in module

flask.ext.restless), 69
simple_serialize() (in module

flask.ext.restless), 71

U
url_for() (in module flask.ext.restless), 70

89

	I User's guide
	Downloading and installing Flask-Restless
	Quickstart
	Creating API endpoints
	Deferred API registration

	Requests and responses
	Fetching resources and relationships
	Creating resources
	Deleting resources
	Updating resources
	Updating relationships
	Resource ID must be a string
	Trailing slashes in URLs
	Date and time fields
	Errors and error messages
	JSONP callbacks
	JSON API extensions
	Cross-Origin Resource Sharing (CORS)

	Customizing the ReSTful interface
	HTTP methods
	API prefix
	Collection name
	Specifying one of many primary keys
	Enable bulk operations
	Custom serialization
	Capturing validation errors
	Request preprocessors and postprocessors
	Custom queries

	II API reference
	API
	The API Manager class
	Global helper functions
	Serialization helpers
	Pre- and postprocessor helpers

	III Additional information
	Similar projects
	Copyright and license
	Changelog
	Version 1.0.0b1
	Older versions

