X Flask-

A Restless

Flask-Restless Documentation

Release 1.0.0b2.dev
Mar 25, 2017

Contents

1 User’s guide
1.1 Downloading and installing Flask-Restless

1.2 Quickstart

1.3 Creating APlendpoints

14 Requestsand responses

1.5 Customizing the ReSTful interface

1.6 Common SQLAlchemy setups
2 APl reference

21 APL. ...
3 Additional information

3.1 Similar projectso

32 Copyrightand license

33 Changelog

ii

Flask-Restless Documentation, Release 1.0.0b2.dev

Flask-Restless provides simple generation of ReSTful APIs for database models de-
tined using SQLAlchemy (or Flask-SQLAlchemy). The generated APIs satisfy the re-
quirements of the JSON API specification.

This is the documentation for version 1.0.0b2. See also the the most recent stable ver-
sion documentation and the development version documentation

Warning: This is a “beta” version, so there may be more bugs than usual.

Contents 1

http://jsonapi.org
https://flask-restless.readthedocs.org/en/stable/
https://flask-restless.readthedocs.org/en/stable/
https://flask-restless.readthedocs.org/en/latest

Flask-Restless Documentation, Release 1.0.0b2.dev

2 Contents

CHAPTER 1

User’s guide

How to use Flask-Restless in your own projects. Much of the documentation in this
chapter assumes some familiarity with the terminology and interfaces of the JSON API
specification.

Downloading and installing Flask-Restless

Flask-Restless can be downloaded from the Python Package Index. The development
version can be downloaded from GitHub. However, it is better to install with pip (in
a virtual environment provided by virtualenv):

pip install Flask-Restless

Flask-Restless supports all Python versions that Flask supports, which currently in-
clude versions 2.6, 2.7, 3.3, 3.4, and 3.5.

Flask-Restless has the following dependencies (which will be automatically installed
if you use pip):

¢ Flask version 0.10 or greater

¢ SQLAlchemy version 0.8 or greater

* python-dateutil version strictly greater than 2.2
Flask-SQLAIchemy is supported but not required.

https://pypi.python.org/pypi/Flask-Restless
https://github.com/jfinkels/flask-restless
http://flask.pocoo.org
https://sqlalchemy.org
http://labix.org/python-dateutil
https://packages.python.org/Flask-SQLAlchemy

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

Flask-Restless Documentation, Release 1.0.0b2.dev

Quickstart

For the restless:

import flask
import flask_sqlalchemy
import flask_restless

Create the Flask application and the Flask-SQLAlchemy object.
app = flask.Flask(__name__)

app.config['DEBUG'] = True
app.configl['SQLALCHEMY_DATABASE_URI'] = 'sqlite:////tmp/test.db’
db = flask_sqglalchemy.SQLAlchemy(app)

Create your Flask-SQLALchemy models as usual but with the following
restriction: they must have an __init__ method that accepts keyword
arguments for all columns (the constructor in
flask_sqlalchemy.SQLAlchemy.Model supplies such a method, so you
don't need to declare a new one).
class Person(db.Model):

id = db.Column(db.Integer, primary_key=True)

name = db.Column(db.Unicode)

birth_date = db.Column(db.Date)

class Article(db.Model):
id = db.Column(db.Integer, primary_key=True)
title = db.Column(db.Unicode)
published_at = db.Column(db.DateTime)
author_id = db.Column(db.Integer, db.ForeignKey('person.id"'))
author = db.relationship(Person, backref=db.backref('articles"’,
lazy="dynamic"))

Create the database tables.
db.create_all()

Create the Flask-Restless API manager.
manager = flask_restless.APIManager(app, flask_sqglalchemy_db=db)

Create API endpoints, which will be available at /api/<tablename> by
default. Allowed HTTP methods can be specified as well.
manager.create_api(Person, methods=['GET', 'POST', 'DELETE'])
manager.create_api(Article, methods=['GET'])

start the flask loop
app.run()

You may find this example at examples/quickstart.py in the source distribution; you

4 Chapter 1. User’s guide

Flask-Restless Documentation, Release 1.0.0b2.dev

may also view it online. Further examples can be found in the examples/ directory in
the source distribution or on the web

Creating API endpoints

To use this extension, you must have defined your database models using either
SQLAIchemy or Flask-SQLALchemy. The basic setup in either case is nearly the same.

If you have defined your models with Flask-SQLAlchemy, first, create your Flask ob-
ject, SOLAlchemy object, and model classes as usual but with one additional restriction:
each model must have a primary key column of type either Integer or Unicode.

from flask import Flask
from flask_sqglalchemy import SQLAlchemy

app = Flask(__name__)
app.configl['SQLALCHEMY_DATABASE_URI'] = 'sqlite:////tmp/test.db’
db = SQLAlchemy(app)

class Person(db.Model):
id = db.Column(db.Integer, primary_key=True)

class Article(db.Model):
id = db.Column(db.Integer, primary_key=True)
author_id = db.Column(db.Integer, db.ForeignKey('person.id"'))
author = db.relationship(Person, backref=db.backref('articles"'))

db.create_all()

If you are using pure SQLAlchemy:

from flask import Flask

from sqlalchemy import Column, Integer, Unicode

from sqlalchemy import ForeignKey

from sqlalchemy import create_engine

from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import backref, relationship

from sqlalchemy.orm import scoped_session, sessionmaker

app = Flask(__name__)

engine = create_engine('sqlite:////tmp/testdb.sqlite', convert_unicode=True)
Session = sessionmaker(autocommit=False, autoflush=False, bind=engine)
mysession = scoped_session(Session)

Base = declarative_base()
Base.metadata.bind = engine

1.3. Creating API endpoints 5

https://github.com/jfinkels/flask-restless/tree/master/examples/quickstart.py
https://github.com/jfinkels/flask-restless/tree/master/examples\T1\textgreater {}
http://flask.pocoo.org/docs/api/#flask.Flask
http://flask-sqlalchemy.pocoo.org/api/#flask_sqlalchemy.SQLAlchemy
http://docs.sqlalchemy.org/en/latest/core/type_basics.html#sqlalchemy.types.Integer
http://docs.sqlalchemy.org/en/latest/core/type_basics.html#sqlalchemy.types.Unicode

Flask-Restless Documentation, Release 1.0.0b2.dev

class Person(Base):
id = Column(Integer, primary_key=True)

class Article(Base):
id = Column(Integer, primary_key=True)
author_id = Column(Integer, ForeignKey('person.id"))
author = relationship(Person, backref=backref('articles"))

Base.metadata.create_all()

Second, instantiate an APIManager object with the Flask and SQLAlchemy objects:

from flask_restless import APIManager

manager = APIManager(app, flask_sqglalchemy_db=db)

Or if you are using pure SQLAlchemy, specify the session you created above instead:

manager = APIManager(app, session=mysession)

Third, create the API endpoints that will be accessible to web clients:

person_blueprint = manager.create_api(Person, methods=['GET', 'POST'])
article_blueprint = manager.create_api(Article)

You can specify which HTTP methods are available for each API endpoint. In this
example, the client can fetch and create people, but only fetch articles (the default if no
methods are specified). There are many options for customizing the endpoints created
at this step; for more information, see Customizing the ReSTful interface.

Due to the design of Flask, these APIs must be created before your application handles
any requests. The return value of APIManager.create_api() is the blueprint in which
the endpoints for the specified database model live. The blueprint has already been
registered on the Flask application, so you do not need to register it yourself. It is
provided so that you can examine its attributes, but if you don’t need it then just
ignore it:

methods = ['GET', 'POST']
manager.create_api(Person, methods=methods)
manager.create_api(Article)

If you wish to create the blueprint for the API without registering it (for example, if
you wish to register it manually later in your code), use the create_api_blueprint()
method instead. You must provide an additional positional argument, name, to this
method:

blueprint = manager.create_api_blueprint('person', Person, methods=methods)
later...
someapp.register_blueprint(blueprint)

6 Chapter 1. User’s guide

http://flask.pocoo.org/docs/api/#flask.Flask
http://flask-sqlalchemy.pocoo.org/api/#flask_sqlalchemy.SQLAlchemy
http://flask.pocoo.org/docs/api/#flask.Flask

Flask-Restless Documentation, Release 1.0.0b2.dev

By default, the API for Person in the above code samples will be accessible at
<base_url>/api/person, where the person part of the URL is the value of Person.

__tablename__:

>>> import json
>>> # The python-requests library is installable from PyPI.
>>> import requests
>>> # Let's create a new person resource with the following fields.
>>> newperson = {'type': 'person', 'name': u'lLincoln', 'age': 23}
>>> # Our requests must have the appropriate JSON API headers.
>>> headers = {'Content-Type': 'application/vnd.apit+json',
- "Accept': 'application/vnd.api+json'}
>>> # Assume we have a Flask application running on localhost.
>>> r = requests.post('http://localhost/api/person’,
- data=json.dumps(newperson), headers=headers)
>>> r.status_code
201
>>> document = json.loads(r.data)
>>> dumps(document, indent=2)
{
"data": {
"id": "1",
"type": "person”,
"relationships”: {
"articles”: {
"data”: [1,
"links": {
"related”: "http://localhost/api/person/1/articles”,
"self”: "http://localhost/api/person/1/relationships/articles’
}
1,
1
"links": {
"self": "http://localhost/api/person/1”
3

!

}
"meta": {3,

"jsonapi”: {
"version”: "1.0"

}

>>> newid = document['data']['id']

>>> r = requests.get('/api/person/{0}"'.format(newid), headers=headers)

>>> r.status_code

200

>>> document = loads(r.data)

>>> dumps(document, indent=2)

{
"data": {

1.3. Creating API endpoints

Flask-Restless Documentation, Release 1.0.0b2.dev

"id": "1,
"type": "person”,
"relationships”: {
"articles”: {
"data”: [],
"links": {
"related”: "http://localhost/api/person/1/articles”,
"self": "http://localhost/api/person/1/relationships/articles”

3
1,
s
"links": {
"self": "http://localhost/api/person/1"
}
}
"meta": {3,
"jsonapi”: {
"version”: "1.0"
}

}

If the primary key is a Unicode instead of an Integer, the instances will be accessi-
ble at URL endpoints like http://<host>:<port>/api/person/foo instead of http://
<host>:<port>/api/person/1.

Deferred API registration

If you only wish to create APIs on a single Flask application and have access to the
Flask application before you create the APIs, you can provide a Flask application as
an argument to the constructor of the APIManager class, as described above. However,
if you wish to create APIs on multiple Flask applications or if you do not have access
to the Flask application at the time you create the APIs, you can use the APIManager.
init_app() method.

If a APIManager object is created without a Flask application,

manager = APIManager(session=session)

then you can create your APIs without registering them on a particular Flask applica-
tion:

manager.create_api(Person)
manager.create_api(Article)

Later, you can call the init_app() method with any Flask objects on which you would
like the APIs to be available:

appl = Flask('appl"')
app2 = Flask('app2')

8 Chapter 1. User’s guide

http://docs.sqlalchemy.org/en/latest/core/type_basics.html#sqlalchemy.types.Unicode
http://docs.sqlalchemy.org/en/latest/core/type_basics.html#sqlalchemy.types.Integer
http://flask.pocoo.org/docs/api/#flask.Flask

Flask-Restless Documentation, Release 1.0.0b2.dev

manager.init_app(app1)
manager.init_app(app2)

The manager creates and stores a blueprint each time create_api() is invoked, and
registers those blueprints each time init_app() is invoked. (The name of each
blueprint will be a uuid.UUID.)

Changed in version 1.0.0: The behavior of the init_app() method was strange and
incorrect before version 1.0.0. It is best not to use earlier versions.

Requests and responses

Requests and responses are all in the JSON API format, so each request must include
an Accept header whose value is application/vnd.api+json and any request that con-
tains content must include a Content-Type header whose value is application/vnd.
api+json. If they do not, the client will receive an error response.

This section of the documentation assumes some familiarity with the JSON API spec-
ification.

Fetching resources and relationships

This section described fetching resources and relationships via GET requests.

Function evaluation

This section describes behavior that is not part of the [SON API specification.

If the allow_functions keyword argument to APIManager.create_api() is set to True
when creating an API for a model, then the endpoint /api/eval/person will be made
available for GET requests. This endpoint responds to requests for evaluation of SQL
functions on all instances the model.

If the client specifies the functions query parameter, it must be a percent-encoded list
of function objects, as described below.

A function object is a JSON object. A function object must be of the form

{"name": <function_name>, "field"”: <field_name>}

where <function_name> is the name of a SQL function as provided by SQLAlchemy’s
func object.

For example, to get the average age of all people in the database,

GET /api/eval/person?functions=[{"name":"avg",6 "field":"age"}] HTTP/1.1
: example.com
: application/json

1.4. Requests and responses 9

https://docs.python.org/3/library/uuid.html#uuid.UUID
http://tools.ietf.org/html/rfc7231#section-5.3.2
http://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://tools.ietf.org/html/rfc7231#section-4.3.1
http://tools.ietf.org/html/rfc7231#section-4.3.1
https://en.wikipedia.org/wiki/Percent-encoding#Percent-encoding_the_percent_character
https://docs.sqlalchemy.org/en/latest/core/expression_api.html#sqlalchemy.sql.expression.func

Flask-Restless Documentation, Release 1.0.0b2.dev

The response will be a JSON object with a single element, data, containing a list of the
results of all the function evaluations requested by the client, in the same order as in
the functions query parameter. For example, to get the sum and the average ages of
all people in the database, the request

n,.n n.n

GET /api/eval/person?functions=[{"name":"avg", "field":"age"},{"name":"sum"”,"field
~":"age"}] HTTP/1.1
: example.com
: application/json

yields the response

HTTP/1.1 200 OK
: application/json

[15.0, 60.0]

Example

To get the total number of resources in the collection (that is, the number of instances
of the model), you can use the function object

{"name": "count”, "field": "id"}

Then the request

GET /api/eval/person?functions=[{"name":"count”,"field":"id"}] HTTP/1.1
: example.com
: application/json

yields the response

HTTP/1.1 200 OK
: application/json

{
"data": [42]

3

The function evaluation endpoint also respects filtering query parameters. Specifically,
tilters are applied to the model before the function evaluation is performed, so you can
apply a function to a subset of resources. See Filtering for more information.

Changed in version 1.0.0b2: Adds ability to use filters in function evaluation.
Inclusion of related resources

For more information on client-side included resources, see Inclusion of Related Resources
in the JSON API specification.

10 Chapter 1. User’s guide

http://jsonapi.org/format/#fetching-includes

Flask-Restless Documentation, Release 1.0.0b2.dev

By default, no related resources will be included in a compound document on requests
that would return data. For the client to request that the response includes related
resources in a compound document, use the include query parameter. For example,
to fetch a single resource and include all resources related to it, the request

GET /api/person/1?include=articles HTTP/1.1
: example.com
: application/vnd.api+json

yields the response

HTTP/1.1 200 OK
: application/vnd.api+json

{
"data": {
"id": "1",
"links": {
"self": "http://example.com/api/person/1"
},
"relationships”": {
"articles”: {
"data": [
{
"id": "1",
"type": "article”
}
1,
"links": {
"related"”: "http://example.com/api/person/1/articles”,
"self": "http://example.com/api/person/1/relationships/articles”
}
}
},
"type": "person”
}
"included”: [
{
"id": "1",
"links": {
"self": "http://example.com/api/article/1"
},
"relationships”: {
"author”: {

"data": {
"id": "1",
"type": "person”
1,
"links": {

"related"”: "http://example.com/api/article/1/author”,
"self": "http://example.com/api/article/1/relationships/author”

1.4. Requests and responses 11

Flask-Restless Documentation, Release 1.0.0b2.dev

}
}
},
"type"”: "article”
}
]
}

To specity a default set of related resources to include when the client does not specify
any include query parameter, use the includes keyword argument to the APIManager.
create_api() method.

Specifying which fields appear in responses

For more information on client-side sparse fieldsets, see Sparse Fieldsets in the [SON API
specification.

Warning: The server-side configuration for specifying which fields appear in re-
source objects as described in this section is simplistic; a better way to specify which
tields are included in your responses is to use a Python object serialization library
and specify custom serialization and deserialization functions as described in Cus-
tom serialization.

By default, all fields of your model will be exposed by the API. A client can request
that only certain fields appear in the resource object in a response to a GET request
by using the only query parameter. On the server side, you can specify which fields
appear in the resource object representation of an instance of the model by setting
the only, exclude and additional_attributes keyword arguments to the APIManager.
create_api () method.

If only is an iterable of column names or actual column attributes, only those fields
will appear in the resource object that appears in responses to fetch instances of this
model. If instead exclude is specified, all fields except those specified in that iterable
will appear in responses. If additional_attributes is an iterable of column names,
the values of these attributes will also appear in the response; this is useful if you wish
to see the value of some attribute that is not a column or relationship.

Attention: The type and id elements will always appear in the resource object,
regardless of whether the server or the client tries to exclude them.

For example, if your models are defined like this (using Flask-SQLAIchemy):

class Person(db.Model):
id = db.Column(db.Integer, primary_key=True)
name = db.Column(db.Unicode)

12 Chapter 1. User’s guide

http://jsonapi.org/format/#fetching-sparse-fieldsets
http://tools.ietf.org/html/rfc7231#section-4.3.1

Flask-Restless Documentation, Release 1.0.0b2.dev

birthday = db.Column(db.Date)
articles = db.relationship('Article")

This class attribute is not a column.
foo = 'bar'

class Article(db.Model):
id = db.Column(db.Integer, primary_key=True)
author_id = db.Column(db.Integer, db.ForeignKey('person.id'))

and you want your resource objects to include only the values of the name and birthday
columns, create your API with the following arguments:

apimanager.create_api(Person, only=['name', 'birthday'])

Now a request like

GET /api/person/1 HTTP/1.1
: example.com
: application/vnd.api+json

yields the response

HTTP/1.1 200 OK
: application/vnd.api+json

{
"data": {
"id": "1",
"links": {
"self": "http://example.com/api/person/1"
},
"attributes”: {
"birthday”: "1969-07-20",
"name"”: "foo"
},

"type": "person”

If you want your resource objects to exclude the birthday and name columns:

apimanager.create_api(Person, exclude=['name', 'birthday'])

Now the same request yields the response

HTTP/1.1 200 OK
: application/vnd.api+json

{
"data": {

1.4. Requests and responses 13

Flask-Restless Documentation, Release 1.0.0b2.dev

"id": "1",
"links": {
"self": "http://example.com/api/person/1"
}
"relationships”: {
"articles": {
"data": [1,
"links": {
"related”: "http://example.com/api/person/1/articles”,
"self": "http://example.com/api/person/1/links/articles”

}
1,
},
"type": "person”
}
}

If you want your resource objects to include the value for the class attribute foo:

apimanager.create_api(Person, additional_attributes=['foo'])

Now the same request yields the response

HTTP/1.1 200 OK
Content-Type: application/vnd.apit+json

{
"data": {
"attributes”: {
"birthday": "1969-07-20",
"foo": "bar",
"name"”: "foo"
},
"id": "1",
"links": {
"self"”: "http://example.com/api/person/1"
}
"relationships”: {
"articles”: {
"data": [1,
"links": {
"related”: "http://example.com/api/person/1/articles”,
"self": "http://example.com/api/person/1/links/articles”

}
}
}’
"type": "person”
}
}

14 Chapter 1. User’s guide

Flask-Restless Documentation, Release 1.0.0b2.dev

Sorting

Clients can sort according to the sorting protocol described in the Sorting section of
the JSON API specification. Sorting by a nullable attribute will cause resources with
null attributes to appear first. The client can request case-insensitive sorting by setting
the query parameter ignorecase=1.

Clients can also request grouping by using the group query parameter. For example,
if your database has two people with name 'foo' and two people with name 'bar’, a
request like

GET /api/person?group=name HTTP/1.1
: example.com
: application/vnd.api+json

yields the response

HTTP/1.1 200 OK
: application/vnd.api+json

{
"data": [
{
"attributes”: {
"name"”: "foo",
},
"id": "1",
"links": {
"self": "http://example.com/api/person/1”
},
"relationships”: {
"articles": {
"data": [1,
"links": {
"related”: "http://example.com/api/person/1/articles”,
"self": "http://example.com/api/person/1/relationships/articles”
}
}
},
"type": "person”
1,

{
"attributes”: {

"name": Nbar.”,
1,
"id": H3H,
"links": {
"self”: "http://example.com/api/person/3"
1},
"relationships”: {
"articles": {

1.4. Requests and responses 15

http://jsonapi.org/format/#fetching-sorting

Flask-Restless Documentation, Release 1.0.0b2.dev

"data": [1,
"links": {
"related"”: "http://example.com/api/person/3/articles”,
"self": "http://example.com/api/person/3/relationships/articles”

}
}
},
"type": "person”
},
]’
"links": {
"first”: "http://example.com/api/person?group=name&page[number]=1&

—pagel[size]=10",
"last": "http://example.com/api/person?group=name&pagel[number]=1&page[size]=10

"next": null,
"prev": null,

"self”: "http://example.com/api/person?group=name"”
1},
"meta”: {
"total": 2
}
}
Pagination

Pagination works as described in the JSON API specification, via the page[number] and
page[size] query parameters. Pagination respects sorting, grouping, and filtering.
The first page is page one. If no page number is specified by the client, the first page
will be returned. By default, pagination is enabled and the page size is ten. If the page
size specified by the client is greater than the maximum page size as configured on the
server, then the query parameter will be ignored.

To set the default page size for collections of resources, use the page_size keyword
argument to the APIManager. create_api() method. To set the maximum page size that
the client can request, use the max_page_size argument. Even if page_size is greater
than max_page_size, at most max_page_size resources will be returned in a page. If
max_page_size is set to 9, the client will be able to specify arbitrarily large page sizes.
If, further, page_size is set to 0, pagination will be disabled by default, and any GET
request that does not specify a page size in its query parameters will get a response
with all matching results.

Attention: Disabling pagination can result in arbitrarily large responses!

For example, to set each page to include only two results:

16 Chapter 1. User’s guide

http://tools.ietf.org/html/rfc7231#section-4.3.1

Flask-Restless Documentation, Release 1.0.0b2.dev

apimanager.create_api(Person, page_size=2)

Then a GET request to /api/person?page[number]=2 would yield the response

HTTP/1.1 200 OK
: application/vnd.api+json

{
"data": [
{
"id": "3",
"type": "person”,
"attributes”: {
"name": "John"
}
}
{
"id": "4",
"type": "person”,
"attributes”: {
"name": "Paul”
}
}
1,
"links": {
"first": "http://example.com/api/person?page[number]=18&page[size]=2",
"last”: "http://example.com/api/person?page[number]=3&page[size]=2",
"next": "http://example.com/api/person?pagelnumber]=3&pagel[size]=2",
"prev”: "http://example.com/api/person?page[number]=1&page[size]=2",
"self": "http://example.com/api/person”
},
"meta": {
"total”: 6
}
}
Filtering

Requests that would normally return a collection of resources can be filtered so that
only a subset of the resources are returned in a response. If the client specifies the
filter[objects] query parameter, it must be a URL encoded JSON list of filter objects,
as described below.

Quick client examples for filtering

The following are some quick examples of making filtered GET requests from different
types of clients. More complete documentation is in subsequent sections. In these

1.4. Requests and responses 17

http://tools.ietf.org/html/rfc7231#section-4.3.1
https://en.wikipedia.org/wiki/Percent-encoding
http://tools.ietf.org/html/rfc7231#section-4.3.1

Flask-Restless Documentation, Release 1.0.0b2.dev

examples, each client will filter by instances of the model Person whose names contain
the letter “y”.

Using the Python requests library:

import requests
import json

url = 'http://127.0.0.1:5000/api/person’
headers = {'Accept': 'application/vnd.api+json'}

filters = [dict(name='name', op='like', val='%y%')]
params = {'filter[objects]': json.dumps(filters)}

response = requests.get(url, params=params, headers=headers)
assert response.status_code == 200
print(response.json())

Using jQuery:
var filters = [{"name”: "id", "op": "like", "val”: "%y%"}1;
$.ajax({
data: {"filter[objects]”: JSON.stringify(filters)},
headers: {
"Accept”: JSONAPI_MIMETYPE
},

success: function(data) { console.log(data.objects); 3},
url: 'http://127.0.0.1:5000/api/person’

;s

Using curl:

curl \
-G\
-H "Accept: application/vnd.apit+json” \
-d "filter[objects]=[{\"name\":\"name\"” ,\"op\":\"1ike\" ,\"val\":\"%y%\"}1" \
http://127.0.0.1:5000/api/person

The examples/ directory has more complete versions of these examples.

Filter objects

A filter object is a JSON object. Filter objects are defined recursively as follows. A filter
object may be of the form

n n

{"name": <field_name>, "op": <unary_operator>}

where <field_name> is the name of a field on the model whose instances are being
tfetched and <unary_operator> is the name of one of the unary operators supported by
Flask-Restless. For example,

18 Chapter 1. User’s guide

http://docs.python-requests.org/en/latest/
http://jquery.com/
http://curl.haxx.se/

Flask-Restless Documentation, Release 1.0.0b2.dev

{"name": "birthday”, "op": "is_null"}

A filter object may be of the form

" n

{"name": <field_name>, "op": <binary_operator>, "val"”: <argument>}

where <binary_operator> is the name of one of the binary operators supported by
Flask-Restless and <argument> is the second argument to that binary operator. For
example,

n n n

{"name": "age", "op": "gt”, "val": 23}

A filter object may be of the form

n n

{"name": <field_name>, "op": <binary_operator>, "field": <field_name>}

The field element indicates that the second argument to the binary operator should
be the value of that field. For example, to filter by resources that have a greater width
than height,

{Mname": ”Width”, "op": ”gt”, nfieldn: ”height”}

A filter object may be of the form

n n

{"name”: <relation_name>, "op": <relation_operator>, "val": <filter_object>}

where <relation_name> is the name of a relationship on the model whose resources
are being fetched, <relation_operator> is either "has”, for a to-one relationship, or
"any", for a to-many relationship, and <filter_object> is another filter object. For
example, to filter person resources by only those people that have authored an article
dated before January 1, 2010,

{
"name": "articles”,
"op": "any",
"val": {
"name”: "date”,
"op": "1t",
"val”: "2010-01-01"
}
}

For another example, to filter article resources by only those articles that have an au-
thor of age at most fifty,

{
"name”: "author”,
llop": Ilhasll,
"Va].": {
Mname": Ilagell’

1.4. Requests and responses 19

Flask-Restless Documentation, Release 1.0.0b2.dev

n

op": "lte"”,
"val”: 50
}
}

A filter object may be a conjunction (“and”), disjunction (“or”), or negation (“not”) of
other filter objects:

{"or": [<filter_object>, <filter_object>, ...1}

or

{"and”: [<filter_object>, <filter_object>, ...]1}

or

{"not": <filter_object>}

For example, to filter by resources that have width greater than height, and length of
at least ten,

{
"and": [
{"name": "width", "op": "gt", "field": "height"},
{"name": "length”, "op": "lte", "val": 10}
]
}

How are filter objects used in practice? To get a response in which only those resources
that meet the requirements of the filter objects are returned, clients can make requests
like this:

GET /api/person?filter[objects]=[{"name"”:"age","op":"<","val”:183}] HTTP/1.1
: example.com
: application/vnd.api+json

Operators

Flask-Restless understands the following operators, which correspond to the appro-
priate SQLAlchemy column operators.

® —— eq, equals, equals_to

e |= neq, does_not_equal, not_equal_to
* > gt, < 1t

e >= ge, gte, geq, <=, le, 1te, leq

® in, not_in

20 Chapter 1. User’s guide

https://docs.sqlalchemy.org/en/latest/core/expression_api.html#sqlalchemy.sql.operators.ColumnOperators

Flask-Restless Documentation, Release 1.0.0b2.dev

e is_null,is_not_null

like, ilike, not_like
® has
® any

Flask-Restless also understands the PostgreSOL network address operators <<, <<=,
>>, >>=, <>, and &8.

Warning: If you use a percent sign in the argument to the like operator (for
example, %somestring%), make sure it is percent-encoded, otherwise the server may
interpret the first few characters of that argument as a percent-encoded character
when attempting to decode the URL.

Custom operators

You can use the register_operator() function to extend the set of known operators:

from flask_restless import register_operator

Create a custom "greater than” implementation.
register_operator('my_gt', lambda x, y: x -y > 0)

Then the client makes a request with a filter object whose op element is the name of
this operator:

n,n

GET /api/person?filter[objects]=[{"name"”:"age","op":"my_gt",6"val”:18}] HTTP/1.1
: example.com
: application/vnd.api+json

You can also override existing operators by setting the name of your operator to be the
name of a existing operator; the built-in operators are listed in the previous section:

register_operator('gt', lambda x, y: x -y > 0)

Simpler filtering

Flask-Restless also supports a simpler form of filtering as described in the J[SON API
filtering recommendation. For filtering by the foreign key of a to-one relationship, use
a request of the form

GET /api/comments?filter[post]=1,2&filter[author]=12 HTTP/1.1
: example.com
: application/vnd.api+json

1.4. Requests and responses 21

https://www.postgresql.org/docs/current/static/functions-net.html
https://en.wikipedia.org/wiki/Percent-encoding#Percent-encoding_the_percent_character
http://jsonapi.org/recommendations/#filtering
http://jsonapi.org/recommendations/#filtering

Flask-Restless Documentation, Release 1.0.0b2.dev

Flask-Restless will automatically determine the correct query corresponding to the
given to-one relationships.

You can also filter by attribute:

GET /api/person?filter[age]=21 HTTP/1.1
: example.com
: application/vnd.api+json

Implementation note

Each of these simple filters is converted to the more complex filter object representa-
tion as described in the preceding sections and appended to the list of filter objects
computed from the request query parameters.

Requiring singleton collections

If a client wishes a request for a collection to yield a response with a singleton col-
lection, the client can use the filter[single] query parameter. The value of this pa-
rameter must be either 1 or @. If the value of this parameter is 1 and the response
would yield a collection of either zero or more than two resources, the server instead
responds with 404 Not Found.

For example, a request like

GET /api/person?filter[single]=1&filter[objects]=[{"name":"id","op":"eq","val":1}
] HTTP/1.1
: example.com
: application/vnd.api+json

yields the response

HTTP/1.1 200 OK
: application/vnd.api+json

{
"data": {
"id": "1",
"type": "person”,
"links": {
"self": "http://example.com/api/person/1"
}
},
"links": {
"self": "http://example.com/api/person?filter[single]=1&filter[objects]=[{\
<"name\":\"id\",\"op\":\"eq\"”,\"val\":1}]"
},
}

22 Chapter 1. User’s guide

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

Flask-Restless Documentation, Release 1.0.0b2.dev

But a request like

GET /api/person?filter[single]=1 HTTP/1.1
: example.com
: application/vnd.api+json

would yield an error response if there were more than one Person instance in the
database.

Filter object examples

Attribute greater than a value

On request

GET /api/person?filter[objects]=[{"name":"age", "op":"gt","val":18}] HTTP/1.1
: example.com
: application/vnd.api+json

the response will include only those Person instances that have age attribute greater
than or equal to 18:

HTTP/1.1 200 OK
: application/vnd.api+json

{
"data": [
{
"attributes”: {
"age": 19
1},
"id": 712”,
"links": {
"self": "http://example.com/api/person/2"
},
"type": "per‘son"
},
{
"attributes”": {
"age": 29
},
"idM: I15H'
"links": {
"self": "http://example.com/api/person/5”
},
"type": "person”
1},
1,
"links": {

1.4. Requests and responses 23

Flask-Restless Documentation, Release 1.0.0b2.dev

"self": "/api/person?filter[objects]=[{\"name\":\"age\" ,\"op\":\"gt\",\"val\
~":18371"
},
"meta": {
"total”: 2

Arbitrary Boolean expression of filters

On request

GET /api/person?filter[objects]=[{"or":[{"name":"age","op”:"1t","val":10},{"name":
~"age","op":"gt","val":20}1}] HTTP/1.1
: example.com
: application/vnd.api+json

the response will include only those Person instances that have age attribute either less
than 10 or greater than 20:

HTTP/1.1 200 OK
: application/vnd.api+json

{
"data": [
{
"attributes”": {
"age": 9
1,
"id": H1H,
"links": {
"self": "http://example.com/api/person/1"
},
"type": npersonu
},
{
"attributes”: {
"age": 25
},
"id": 11311,
"links": {
"self": "http://example.com/api/person/3”
},
"type": "person”
}
1,

"links": {
"self": "/api/person?filter[objects]=[{\"or\":[{\"name\":\"age\",\"op\":\"1t\
<" \"val\":103},{\"name\":\"age\",\"op\":\"gt\",\"val\":20}]1}]1"

24 Chapter 1. User’s guide

Flask-Restless Documentation, Release 1.0.0b2.dev

1},
"meta”: {
"total”: 2
}
}

Comparing two attributes

On request

GET /api/box?filter[objects]=[{"name"”:"width", "op":"ge","field":"height"}] HTTP/1.
<1
: example.com
: application/vnd.api+json

the response will include only those Box instances that have width attribute greater
than or equal to the value of the height attribute:

HTTP/1.1 200 OK
: application/vnd.api+json

{
"data": [
{
"attributes”: {
"height”: 10,
"width"”: 20
}
Hidll: II-IH’
"links": {
"self": "http://example.com/api/box/1"
1,
"type": ubOXn
1,
{

"attributes”: {
"height”: 15,
"width”: 20
}
"id": "2",
"links": {
"self": "http://example.com/api/box/2"
},
"type": "box"
}
1,
"links": {
"self": "/api/box?filter[objects]=[{\"name\"”:\"width\"” ,\"op\":\"ge\", \"field\
<":\"height\"}]"

1.4. Requests and responses 25

Flask-Restless Documentation, Release 1.0.0b2.dev

1},
"meta”: {
"total”: 100

Using has and any

On request

n n n n n n n n

GET /api/person?filter[objects]=[{"name":"articles”,"op":"any","val":{"name": "date
S Mop”:"1t”,"val”:"2010-01-01"3}] HTTP/1.1
: example.com
: application/vnd.api+json

the response will include only those people that have authored an article dated before
January 1, 2010 (assume in the example below that at least one of the article linkage
objects refers to an article that has such a date):

HTTP/1.1 200 OK
: application/vnd.api+json

{
"data”: [
{
"id": I!-Ill’
"links": {

"self": "http://example.com/api/person/1"
1,

"relationships”: {
"articles”: {

"data”: [
{
"id": "1",
"type": "article”
},
{
"id": "2",
"type": "article”
}
1,
"links": {

"related”: "http://example.com/api/person/1/articles”,
"self": "http://example.com/api/person/1/relationships/articles”
}
}
},
"type": "person”

}

26 Chapter 1. User’s guide

Flask-Restless Documentation, Release 1.0.0b2.dev

1,
"links": {
"self": "/api/person?filter[objects]=[{\"name\":\"articles\"”,\"op\":\"any\" \
<"val\":{\"name\":\"date\",\"op\":\"1t\",\"val\":\"2010-01-01\"3}}]1"
1,
"meta": {
"total”: 1

On request

non ", n n

GET /api/article?filter[objects]=[{"name":"author”,”op”:"has", "val”:{"name":"age",
~"op":"1te","val":50}}] HTTP/1.1

Host: example.com

Accept: application/vnd.apit+json

the response will include only those articles that have an author of age at most fifty
(assume in the example below that the author linkage objects refers to a person that
has such an age):

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
"data": [
{
"id": "1",
"links": {
"self": "http://example.com/api/article/1"
},
"relationships”: {
"author”: {
"data": {
"id": "7",
"type": "person”
},
"links": {
"related”: "http://example.com/api/article/1/author”,
"self": "http://example.com/api/article/1/relationships/author”

}
}
},
"type": "article”
}
],
"links": {
"self": "/api/article?filter[objects]=[{\"name\":\"author\",\"op\":\"has\" 6\
<"val\”:{\"name\":\"age\" ,\"op\":\"1te\",\"val\":503}}]1"
},

1.4. Requests and responses 27

Flask-Restless Documentation, Release 1.0.0b2.dev

"meta”: {
"total”: 1

Basic fetching

For the purposes of concreteness in this section, suppose we have executed the follow-
ing code on the server:

from flask import Flask
from flask_sqlalchemy import SQLAlchemy
from flask_restless import APIManager

app = Flask(__name__)
app.configl'SQLALCHEMY_DATABASE_URI'] = 'sqlite:////tmp/test.db’
db = SQLAlchemy(app)

class Person(db.Model):
id = db.Column(db.Integer, primary_key=True)
name = db.Column(db.Unicode)

class Article(db.Model):
id = db.Column(db.Integer, primary_key=True)
title = db.Column(db.Unicode)
author_id = db.Column(db.Integer, db.ForeignKey('person.id"))
author = db.relationship(Person, backref=db.backref('articles"'))

db.create_all()

manager = APIManager(app, flask_sqlalchemy_db=db)
manager.create_api(Person)
manager.create_api(Article)

By default, all columns and relationships will appear in the resource object represen-
tation of an instance of your model. See Specifying which fields appear in responses for
more information on specifying which values appear in responses.

To fetch a collection of resources, the request

GET /api/person HTTP/1.1
: example.com
: application/vnd.api+json

yields the response

HTTP/1.1 200 OK
: application/vnd.api+json

28 Chapter 1. User’s guide

Flask-Restless Documentation, Release 1.0.0b2.dev

"data”: [
{
"attributes”: {
"name": "John"
},
"id": "1",
"links": {
"self": "http://example.com/api/person/1”
},
"relationships”": {
"articles”: {
"data”: [1,
"links": {
"related"”: "http://example.com/api/person/1/articles”,
"self”: "http://example.com/api/person/1/relationships/articles’
}
}

!

},
"type": "person”
}
1,
"links": {
"first”: "http://example.com/api/person?pagelnumber]=1&page[size]=10",
"last": "http://example.com/api/person?pagelnumber]=18page[size]=10",
"next": null,
"prev": null,
"self": "http://example.com/api/person”

1,

"meta": {
"total”: 1

}

To fetch a single resource, the request

GET /api/person/1 HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

yields the response

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
"data": {
"attributes”: {
"name": "John"
}’
"id": "1",
"links": {

1.4. Requests and responses 29

Flask-Restless Documentation, Release 1.0.0b2.dev

"self": "http://example.com/api/person/1"
},
"relationships”: {
"articles"”: {
"data": [1,
"links": {
"related”: "http://example.com/api/person/1/articles”,
"self": "http://example.com/api/person/1/relationships/articles’

}

1

}
1,
"type": "person”
}
}

To fetch a resource from a to-one relationship, the request

GET /api/article/1/author HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

yields the response

HTTP/1.1 200 OK
Content-Type: application/vnd.api+tjson

{
"data": {
"attributes”: {
"name"”: "John"
},
"id": "1",
"links": {
"self": "http://example.com/api/person/1"
},
"relationships": {
"articles”: {

"data”: [
{
"id": "1",
"type": "article”
}
]’

"links": {
"related”: "http://example.com/api/person/1/articles”,
"self": "http://example.com/api/person/1/relationships/articles”
}
}
},
"type": "person”

3

30 Chapter 1. User’s guide

Flask-Restless Documentation, Release 1.0.0b2.dev

To fetch a resource from a to-many relationship, the request

GET /api/person/1/articles HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

yields the response

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
"data": [
{
"attributes”": {
"title”: "Once upon a time”
},
"id": "2",
"links": {
"self”: "http://example.com/api/articles/2"
}’
"relationships”: {
"author”: {
"data": {
"id": "1",
"type": "person”,
},
"links": {
"related"”: "http://example.com/api/articles/2/author”,
"self": "http://example.com/api/articles/2/relationships/author”
}
}
},
"type": "article”
}
1,
"links": {
"first”: "http://example.com/api/person/1/articles?page[number]=1&
—pagel[size]=10",
"last": "http://example.com/api/person/1/articles?page[number]=1&page[size]=10
;}”,
"next": null,
"prev"”: null,
"self": "http://example.com/api/person/1/articles”

1},

"meta”: {
"total”: 1

}

1.4. Requests and responses 31

Flask-Restless Documentation, Release 1.0.0b2.dev

To fetch a single resource from a to-many relationship, the request

GET /api/person/1/articles/2 HTTP/1.1
: example.com
: application/vnd.api+json

yields the response

HTTP/1.1 200 OK
: application/vnd.api+json

{
"data": {
"attributes”: {
"title"”: "Once upon a time”
},
"id": "2",
"links": {
"self": "http://example.com/api/articles/2"
},
"relationships": {
"author”: {
"data”: {
"id": "1",
"type": "person”
},
"links": {
"related"”: "http://example.com/api/articles/2/author”,
"self": "http://example.com/api/articles/2/relationships/author’

3
}

!

3

"type": "article”

To fetch the link object for a to-one relationship, the request

GET /api/article/1/relationships/author HTTP/1.1
: example.com
: application/vnd.api+json

yields the response

HTTP/1.1 200 OK
: application/vnd.api+json

{
"data": {
"id"' u—] n
. ?

32 Chapter 1. User’s guide

Flask-Restless Documentation, Release 1.0.0b2.dev

"type": "person”
}
}

To fetch the link objects for a to-many relationship, the request

GET /api/person/1/relationships/articles HTTP/1.1
: example.com
: application/vnd.api+json

yields the response

HTTP/1.1 200 OK
: application/vnd.api+json

{
"data": [
{
"idn: II1II,
"type": "article”
},
{
"idn: H2Il'
"type": "article”
}
]
}

Creating resources

For the purposes of concreteness in this section, suppose we have executed the follow-
ing code on the server:

from flask import Flask
from flask_sqglalchemy import SQLAlchemy
from flask_restless import APIManager

app = Flask(__name__)
app.configl'SQLALCHEMY_DATABASE_URI'] = 'sqlite:////tmp/test.db’
db = SQLAlchemy(app)

class Person(db.Model):
id = db.Column(db.Integer, primary_key=True)
name = db.Column(db.Unicode)

db.create_all()
manager = APIManager(app, flask_sqlalchemy_db=db)
manager.create_api(Person, methods=['POST'])

1.4. Requests and responses 33

Flask-Restless Documentation, Release 1.0.0b2.dev

To create a new resource, the request

POST /api/person HTTP/1.1
: example.com
: application/vnd.api+json
: application/vnd.api+json

{
"data": {
"type": "person”,
"attributes”: {
"name"”: "foo"
}
}
}

yields the response

HTTP/1.1 201 Created
: http://example.com/api/person/1
: application/vnd.api+json

{
"data": {
"attributes”: {
"name": "foo"
1,
"id": ”1 I!,
"jsonapi”: {
"version": "1.0"
1},
"links": {
"self": "http://example.com/api/person/bd34b544-ad39-11e5-a2aa-4cbb58b9%ee34”
},
"meta”: {3,
"type": "person”
}
}

To create a new resource with a client-generated ID (if enabled by setting
allow_client_generated_ids to True in APIManager.create_api()), the request

POST /api/person HTTP/1.1
: example.com
: application/vnd.api+json
: application/vnd.api+json

{
"data": {
"type": "person”,
"id": "bd34b544-ad39-11e5-a2aa-4chbb58b9%ee34”,

34 Chapter 1. User’s guide

Flask-Restless Documentation, Release 1.0.0b2.dev

"attributes”: {
"name": Ilf‘ooll

yields the response

HTTP/1.1 201 Created
: http://example.com/api/person/bd34b544-ad39-11e5-a2aa-4cbb58b9ee34
: application/vnd.api+json

{
"data": {
"attributes”: {
"name"”: "foo"
}’
"id": "bd34b544-ad39-11e5-a2aa-4cbb58b9ee34”,
"links": {
"self": "http://example.com/api/person/bd34b544-ad39-11e5-a2aa-4cbb58b9%ee34”
}’
"meta”: {3,
"jsonapi”: {
"version": "1.0"
},

"type": "person”

The server always responds with 201 Created and a complete resource object on a
request with a client-generated ID.

The server will respond with 400 Bad Request if the request specifies a field that does
not exist on the model.

Deleting resources

For the purposes of concreteness in this section, suppose we have executed the follow-
ing code on the server:

from flask import Flask
from flask_sqglalchemy import SQLAlchemy
from flask_restless import APIManager

app = Flask(__name__)
app.configl'SQLALCHEMY_DATABASE_URI'] = 'sqlite:////tmp/test.db’
db = SQLAlchemy(app)

class Person(db.Model):
id = db.Column(db.Integer, primary_key=True)

1.4. Requests and responses 35

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

Flask-Restless Documentation, Release 1.0.0b2.dev

db.create_all()
manager = APIManager(app, flask_sqglalchemy_db=db)
manager.create_api(Person, methods=['DELETE"'])

To delete a resource, the request

DELETE /api/person/1 HTTP/1.1
: example.com
: application/vnd.api+json

yields a 204 No Content response.

Updating resources

For the purposes of concreteness in this section, suppose we have executed the follow-
ing code on the server:

from flask import Flask
from flask_sqglalchemy import SQLAlchemy
from flask_restless import APIManager

app = Flask(__name__)
app.configl['SQLALCHEMY_DATABASE_URI'] = 'sqlite:////tmp/test.db’
db = SQLAlchemy(app)

class Person(db.Model):
id = db.Column(db.Integer, primary_key=True)
name = db.Column(db.Unicode)

class Article(db.Model):
id = db.Column(db.Integer, primary_key=True)
author_id = db.Column(db.Integer, db.ForeignKey('person.id"'))
author = db.relationship(Person, backref=db.backref('articles"'))

db.create_all()

manager = APIManager(app, flask_sqglalchemy_db=db)
manager.create_api(Person, methods=['PATCH'])
manager.create_api(Article)

To update an existing resource, the request

PATCH /api/person/1 HTTP/1.1
: example.com
: application/vnd.api+json
: application/vnd.api+json

{
"data": {

36 Chapter 1. User’s guide

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5

Flask-Restless Documentation, Release 1.0.0b2.dev

"type": "person”,
"id": 1,
"attributes”: {
"name”: "foo"
}
}
}

yields a 204 No Content response.

If you set the allow_to_many_replacement keyword argument of APIManager.
create_api() to True, you can replace a to-many relationship entirely by making a
request to update a resource. To update a to-many relationship, the request

PATCH /api/person/1 HTTP/1.1
: example.com
: application/vnd.api+json
: application/vnd.api+json

{
"data": {
"type": "person”,
"id": 1,
"relationships": {
"articles”: {
"data": [
{
"id": "1",
"type": "article”
},
{
"id": "2",
"type": "article”
}
]
}
}
}
}

yields a 204 No Content response.

The server will respond with 400 Bad Request if the request specifies a field that does
not exist on the model.

Updating relationships

For the purposes of concreteness in this section, suppose we have executed the follow-
ing code on the server:

1.4. Requests and responses 37

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

Flask-Restless Documentation, Release 1.0.0b2.dev

from flask import Flask
from flask_sqglalchemy import SQLAlchemy
from flask_restless import APIManager

app = Flask(__name__)
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:////tmp/test.db’
db = SQLAlchemy(app)

class Person(db.Model):
id = db.Column(db.Integer, primary_key=True)
name = db.Column(db.Unicode)

class Article(db.Model):
id = db.Column(db.Integer, primary_key=True)
author_id = db.Column(db.Integer, db.ForeignKey('person.id"'))
author = db.relationship(Person, backref=db.backref('articles"'))

db.create_all()

manager = APIManager(app, flask_sqlalchemy_db=db)
manager.create_api(Person, methods=['PATCH'])
manager.create_api(Article)

To update a to-one relationship, the request

PATCH /api/articles/1/relationships/author HTTP/1.1
: example.com
: application/vnd.api+json
: application/vnd.api+json

{
"data": {
"type": "person”,
"id": 1
}
}

yields a 204 No Content response.

To update a to-many relationship (if enabled by setting allow_to_many_replacement
to True in APIManager.create_api()), the request

PATCH /api/people/1/relationships/articles HTTP/1.1
: example.com
: application/vnd.api+json
: application/vnd.api+json

{
"data": [
{
"type": "article",
"id": 1

38 Chapter 1. User’s guide

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5

Flask-Restless Documentation, Release 1.0.0b2.dev

}’

{
"type": "article”,
"id": 2

}

yields a 204 No Content response.

To add to a to-many relationship, the request

POST /api/person/1/relationships/articles HTTP/1.1
: example.com
: application/vnd.api+json
: application/vnd.api+json

{
"data": [
{
"type"”: "article”,
"id": 1
1},
{
"type": "article",
"id": 2
}
]
}

yields a 204 No Content response.

To remove from a to-many relationship, the request

DELETE /api/person/1/links/articles HTTP/1.1
: example.com
: application/vnd.api+json
: application/vnd.api+json

{
"data": [
{
"type": "article”,
"id": 1
1,
{
"type"”: "article”,
"id": 2
}
]
}

1.4. Requests and responses

39

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5

Flask-Restless Documentation, Release 1.0.0b2.dev

yields a 204 No Content response.

To remove from a to-many relationship (if enabled by setting
allow_delete_from_to_many_relationships to True in APIManager.create_api()),
the request

DELETE /api/person/1/relationships/articles HTTP/1.1
: example.com
: application/vnd.api+json
: application/vnd.api+json

{
"data": [
{
"type": "article”,
"id": 1
},
{
"type": "article”,
"id": 2
}
]
}

yields a 204 No Content response.

Schema at root endpoint

A GET request to the root endpoint responds with a valid JSON API document whose
meta element contains a modelinfo object, which itself contains one member for each
resource object exposed by the API. Each element in modelinfo contains information
about that resource. For example, a request like

GET /api HTTP/1.1
: example.com
: application/vnd.api+json

yields the response

HTTP/1.1 200 OK
: application/vnd.api+json

"data”: null,

"jsonapi”: {
"version": "1.0"

1},

"included”: [],

"links": {3,

"meta": {

40 Chapter 1. User’s guide

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://tools.ietf.org/html/rfc7231#section-4.3.1

Flask-Restless Documentation, Release 1.0.0b2.dev

"modelinfo”": {
"article"”: {
"primarykey"”: "id",
"url”: "http://example.com/api/article”
}7
"person”: {
"primarykey"”: "id",
"url”: "http://example.com/api/person’

3

1

3
3
3

Resource ID must be a string

As required by the JSON AP], the ID (and type) of a resource must be a string in request
and response documents. This does not mean that the primary key in the database
must be a string, only that it will appear as a string in communications between the
client and the server. For more information, see the Identification section of the JSON
API specification.

Trailing slashes in URLs

API endpoints do not have trailing slashes. A GET request to, for example, /api/
person/ will result in a 404 Not Found response.

Date and time fields

Flask-Restless will automatically parse and convert date and time strings into the cor-
responding Python objects. Flask-Restless also understands intervals (also known as
durations), if you specify the interval as an integer representing the number of units
that the interval spans.

If you want the server to set the value of a date or time field of a model as the current
time (as measured at the server), use one of the special strings "CURRENT_TIMESTAMP”,
"CURRENT_DATE", or "LOCALTIMESTAMP". When the server receives one of these strings
in a request, it will use the corresponding SQL function to set the date or time of the
tield in the model.

Errors and error messages

Flask-Restless returns the error responses required by the JSON API specification, and
most other server errors yield a 400 Bad Request. Errors are included in the errors
element in the top-level JSON document in the response body.

1.4. Requests and responses 41

http://jsonapi.org/format/#document-resource-object-identification
http://tools.ietf.org/html/rfc7231#section-4.3.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

Flask-Restless Documentation, Release 1.0.0b2.dev

If a request triggers a sqlalchemy.exc.SQLALchemyError (or any subclass of that excep-

tion, including DataError, IntegrityError, ProgrammingError, etc.), the session will be
rolled back

JSONP callbacks

Flask-Restless responds to JavaScript clients that request JSONP responses. Add a
callback=myfunc query parameter to the request URL on any request that yields a re-
sponse that contains content (including endpoints for function evaluation; see Function
evaluation) to have the JSON data of the response wrapped in the Javascript function
myfunc. This can be used to circumvent some cross domain scripting security issues.

The Content-Type of a JSONP response is application/javascript instead of
application/vnd.api+json because the payload of such a response is not valid JSON
APL

For example, a request like this:

GET /api/person/1?callback=foo HTTP/1.1
: example.com
: application/vnd.api+json

will produce a response like this:

HTTP/1.1 200 OK
: application/javascript

foo({"meta": {/x...%/}, "data": {/*...%/3}})

Then in your Javascript client code, write the function foo like this:

function foo(response) {
var meta, data;
meta = response.meta;
data = response.data;
// Do something cool here...

3

JSON API extensions

Flask-Restless does not yet support the in-development [SON API extension system.

Cross-Origin Resource Sharing (CORS)

Cross-Origin Resource Sharing (CORS) is a protocol that allows JavaScript HTTP
clients to make HTTP requests across Internet domain boundaries while still protect-
ing against cross-site scripting (XSS) attacks. If you have access to the HTTP server

42 Chapter 1. User’s guide

http://docs.sqlalchemy.org/en/latest/core/exceptions.html#sqlalchemy.exc.SQLAlchemyError
http://docs.sqlalchemy.org/en/latest/core/exceptions.html#sqlalchemy.exc.DataError
http://docs.sqlalchemy.org/en/latest/core/exceptions.html#sqlalchemy.exc.IntegrityError
http://docs.sqlalchemy.org/en/latest/core/exceptions.html#sqlalchemy.exc.ProgrammingError
http://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://jsonapi.org/extensions/
http://enable-cors.org

Flask-Restless Documentation, Release 1.0.0b2.dev

that serves your Flask application, I recommend configuring CORS there, since such
concerns are beyond the scope of Flask-Restless. However, in case you need to sup-
port CORS at the application level, you should create a function that adds the nec-
essary HTTP headers after the request has been processed by Flask-Restless (that is,
just before the HTTP response is sent from the server to the client) using the flask.
Blueprint.after_request() method:

from flask import Flask
from flask_restless import APIManager

def add_cors_headers(response):
response.headers['Access-Control-Allow-Origin'] = 'example.com'
response.headers['Access-Control-Allow-Credentials'] = 'true'
Set whatever other headers you like...
return response

app = Flask(__name__)

manager = APIManager (app)

blueprint = manager.create_api_blueprint('mypersonapi', Person)
blueprint.after_request(add_cors_headers)
app.register_blueprint(blueprint)

Customizing the ReSTful interface

This section describes how to use the keyword arguments to the create_api() method
to customize the interface created by Flask-Restless.

Custom serialization

New in version 0.17.0.

Changed in version 1.0.0b1: Transitioned from function-based serialization to class-
based serialization.

Flask-Restless provides serialization and deserialization that work with the JSON API
specification. If you wish to have more control over the way instances of your models
are converted to Python dictionary representations, you can specify custom serializa-
tion by providing it to APIManager.create_api() via the serializer_class keyword
argument. Similarly, to provide a deserializer that converts a Python dictionary rep-
resentation to an instance of your model, use the deserializer_class keyword argu-
ment. However, if you provide a serializer that fails to produce resource objects that
satisfy the JSON API specification, your client will receive non-compliant responses!

Your serializer classes must be a subclass of DefaultSerializer and can override the
serialize() and serialize_many() methods to provide custom serialization. These
methods take an instance or instances as input and return a dictionary representing
a JSON API document. Each also accepts an only keyword argument, indicating the
sparse fieldsets requested by the client:

1.5. Customizing the ReSTful interface 43

http://flask.pocoo.org/docs/api/#flask.Blueprint.after_request
http://flask.pocoo.org/docs/api/#flask.Blueprint.after_request

Flask-Restless Documentation, Release 1.0.0b2.dev

from flask_restless import DefaultSerializer
class MySerializer(DefaultSerializer):

def serialize(self, instance, only=None):
super_serialize = super(DefaultSerializer, self).serialize
document = super_serialize(instance, only=only)
Make changes to the document here...

return document

def serialize_many(self, instances, only=None):
super_serialize = super(DefaultSerializer, self).serialize_many
document = super_serialize(instances, only=only)

Make changes to the document here...

return document

instance is an instance of a SQLAIchemy model, instances is a list of instances, and
the only argument is a list; only the fields (that is, the attributes and relationships)
whose names appear as strings in only should appear in the returned dictionary. The
only exception is that the keys 'id' and 'type' must always appear, regardless of
whether they appear in only. The function must return a dictionary representation of
the resource object.

Flask-Restless also provides functional access to the default serialization, via the
simple_serialize() and simple_serialize_many() functions, which return the result
of the built-in default serialization.

For deserialization, define your custom deserialization class like this:

from flask_restless import DefaultDeserializer
class MyDeserializer(DefaultDeserializer):

def deserialize(self, document):
return Person(...)

document is a dictionary representation of the complete incoming JSON API document,
where the data element contains the primary resource object or objects. The function
must return an instance of the model that has the requested fields. If you override the
constructor, it must take two positional arguments, session and model.

Your code can raise a SerializationException when overriding the
DefaultSerializer.serialize() method, and similarly a DeserializationException
in the DefaultDeserializer.deserialize() method; Flask-Restless will automatically
catch those exceptions and format a JSON API error response. If you wish to collect
multiple exceptions (for example, if several fields of a resource provided to the
deserialize() method fail validation) you can raise a MultipleExceptions exception,
providing a list of other serialization or deserialization exceptions at instantiation
time.

44 Chapter 1. User’s guide

http://jsonapi.org/format/#errors

Flask-Restless Documentation, Release 1.0.0b2.dev

Note: If you wish to write your own serialization functions, we strongly suggest us-
ing a Python object serialization library instead of writing your own serialization func-
tions. This is also likely a better approach than specifying which columns to include
or exclude (Inclusion of related resources) or preprocessors and postprocessors (Request
preprocessors and postprocessors).

For example, if you create schema for your database models using Marshmallow, then
you use that library’s built-in serialization functions as follows:

class PersonSchema(Schema):
id = fields.Integer()
name = fields.String()

def make_object(self, data):
return Person(xxdata)

class PersonSerializer(DefaultSerializer):

def serialize(self, instance, only=None):
person_schema = PersonSchema(only=only)
return person_schema.dump(instance).data

def serialize_many(self, instances, only=None):
person_schema = PersonSchema(many=True, only=only)
return person_schema.dump(instances).data

class PersonDeserializer(DefaultDeserializer):

def deserialize(self, document):
person_schema = PersonSchema()
return person_schema.load(instance).data

JSON API doesn't currently allow bulk creation of resources. When
it does, either in the specification or in an extension, this is
how you would implement it.

def deserialize_many(self, document):

person_schema = PersonSchema(many=True)

return person_schema.load(instance).data

manager = APIManager(app, session=session)

manager.create_api(Person, methods=['GET', 'POST'],
serializer_class=PersonSerializer,
deserializer_class=PersonDeserializer)

For a complete version of this example, see the examples/server_configurations/
custom_serialization.py module in the source distribution, or view it online.

1.5. Customizing the ReSTful interface 45

https://marshmallow.readthedocs.org
https://github.com/jfinkels/flask-restless/tree/master/examples/server_configurations/custom_serialization.py

Flask-Restless Documentation, Release 1.0.0b2.dev

Per-model serialization

The correct serialization function will be used for each type of SQLAlchemy model
for which you invoke APIManager.create_api(). For example, if you create two APIs,
one for Person objects and one for Article objects,

manager.create_api(Person, serializer=person_serializer)
manager.create_api(Article, serializer=article_serializer)

and then make a request like

GET /api/article/1?include=author HTTP/1.1
: example.com
: application/vnd.api+json

then Flask-Restless will use the article_serializer function to serialize the pri-
mary data (that is, the top-level data element in the response document) and the
person_serializer to serialize the included Person resource.

Request preprocessors and postprocessors

To apply a function to the request parameters and/or body before the request is pro-
cessed, use the preprocessors keyword argument. To apply a function to the response
data after the request is processed (immediately before the response is sent), use the
postprocessors keyword argument. Both preprocessors and postprocessors must be
a dictionary which maps HTTP method names as strings (with exceptions as described
below) to a list of functions. The specified functions will be applied in the order given
in the list.

There are many different routes on which you can apply preprocessors and postpro-
cessors, depending on HTTP method type, whether the client is accessing a resource
or a relationship, whether the client is accessing a collection or a single resource, etc.

This table states the preprocessors that apply to each type of endpoint.

preprocessor name applies to URLs like. ..

GET_COLLECTION /api/person

GET_RESOURCE /api/person/1

GET_RELATION /api/person/1/articles
GET_RELATED_RESOURCE | /api/person/1/articles/2
DELETE_RESOURCE /api/person/1

POST_RESOURCE /api/person

PATCH_RESOURCE /api/person/1

GET_RELATIONSHIP /api/person/1/relationships/articles
DELETE_RELATIONSHIP | /api/person/1/relationships/articles
POST_RELATIONSHIP /api/person/1/relationships/articles
PATCH_RELATIONSHIP /api/person/1/relationships/articles

This table states the postprocessors that apply to each type of endpoint.

46 Chapter 1. User’s guide

Flask-Restless Documentation, Release 1.0.0b2.dev

postprocessor name applies to URLs like. ..

GET_COLLECTION /api/person

GET_RESOURCE /api/person/1

GET_TO_MANY_RELATION /api/person/1/articles
GET_TO_ONE_RELATION /api/articles/1/author
GET_RELATED_RESOURCE /api/person/1/articles/2
DELETE_RESOURCE /api/person/1

POST_RESOURCE /api/person

PATCH_RESOURCE /api/person/1
GET_TO_MANY_RELATIONSHIP | /api/person/1/relationships/articles
GET_TO_ONE_RELATIONSHIP | /api/articles/1/relationships/author
GET_RELATIONSHIP /api/person/1/relationships/articles
DELETE_RELATIONSHIP /api/person/1/relationships/articles
POST_RELATIONSHIP /api/person/1/relationships/articles
PATCH_RELATIONSHIP /api/person/1/relationships/articles

Each type of preprocessor or postprocessor requires different arguments. For prepro-
cessors:

preprocessor name keyword arguments
GET_COLLECTION filters, sort, group_by, single
GET_RESOURCE resource_id

GET_RELATION resource_id, relation_name, filters, sort,

group_by, single

GET_RELATED_RESOUR

Ckesource_id, relation_name,
related_resource_id

DELETE_RESOURCE

resource_id

POST_RESOURCE

data

PATCH_RESOURCE

resource_id, data

GET_RELATIONSHIP

resource_id, relation_name

DELETE_RELATIONSHI

Presource_id, relation_name

POST_RELATIONSHIP | resource_id, relation_name, data
PATCH_RELATIONSHIR resource_id, relation_name, data

For postprocessors:

1.5. Customizing the ReSTful interface 47

Flask-Restless Documentation, Release 1.0.0b2.dev

postprocessor name keyword arguments

GET_COLLECTION result, filters, sort, group_by, single
GET_RESOURCE result

GET_TO_MANY_RELATION result, filters, sort, group_by, single
GET_TO_ONE_RELATION result

GET_RELATED_RESOURCE result

DELETE_RESOURCE was_deleted

POST_RESOURCE result

PATCH_RESOURCE result

GET_TO_MANY_RELATIONSHIP | result, filters, sort, group_by, single
GET_TO_ONE_RELATIONSHIP result

DELETE_RELATIONSHIP was_deleted

POST_RELATIONSHIP none

PATCH_RELATIONSHIP none

How can one use these tables to create a preprocessor or postprocessor? If you want to
create a preprocessor that will be applied on GET requests to /api/person, first define
a function that accepts the keyword arguments you need, and has a **kw argument
for any additional keyword arguments (and any new arguments that may appear in
future versions of Flask-Restless):

def fetch_preprocessor(filters=None, sort=None, group_by=None, single=None,
**%kw) :
Here perform any application-specific code...

Next, instruct these preprocessors to be applied by Flask-Restless by using the
preprocessors keyword argument to APIManager.create_api(). The value of this ar-
gument must be a dictionary in which each key is a string containing a processor name
and each value is a list of functions to be applied for that request:

preprocessors = {'GET_COLLECTION': [fetch_preprocessor]}
manager.create_api(Person, preprocessors=preprocessors)

For preprocessors for endpoints of the form /api/person/1, a returned value will be
interpreted as the resource ID for the request. (Remember, as described in Resource ID
must be a string, the returned ID must be a string.) For example, if a preprocessor for
a GET request to /api/person/1 returns the string 'foo', then Flask-Restless will be-
have as if the request were originally for the URL /api/person/foo. For preprocessors
for endpoints of the form /api/person/1/articles or /api/person/1/relationships/
articles, the function can return either one value, in which case the resource ID will
be replaced with the return value, or a two-tuple, in which case both the resource ID
and the relationship name will be replaced. Finally, for preprocessors for endpoints of
the form /api/person/1/articles/2, the function can return one, two, or three values;
if three values are returned, the resource ID, the relationship name, and the related
resource ID are all replaced. (If multiple preprocessors are specified for a single HTTP
method and each one has a return value, Flask-Restless will only remember the value
returned by the last preprocessor function.)

Those preprocessors and postprocessors that accept dictionaries as parameters can
(and should) modify their arguments in-place. That means the changes made to, for

48 Chapter 1. User’s guide

http://tools.ietf.org/html/rfc7231#section-4.3.1
http://tools.ietf.org/html/rfc7231#section-4.3.1

Flask-Restless Documentation, Release 1.0.0b2.dev

example, the result dictionary will be seen by the Flask-Restless view functions and
ultimately returned to the client.

Note: For more information about the filters and single keyword arguments, see
Filtering. For more information about sort and group_by keyword arguments, see
Sorting.

In order to halt the preprocessing or postprocessing and return an error response
directly to the client, your preprocessor or postprocessor functions can raise a
ProcessingException. If a function raises this exception, no preprocessing or post-
processing functions that appear later in the list specified when the API was created
will be invoked. For example, an authentication function can be implemented like
this:

def check_auth(resource_id=None, #*xkw):

Here, get the current user from the session.

current_user = ...

Next, check if the user is authorized to modify the specified

instance of the model.

if not is_authorized_to_modify(current_user, instance_id):

raise ProcessingException(detail="Not Authorized', status=401)

manager.create_api(Person, preprocessors=dict(GET_SINGLE=[check_authl]))

The ProcessingException allows you to specify as keyword arguments to the con-
structor the elements of the JSON API error object. If no arguments are provided, the
error is assumed to have status code 400 Bad Request.

Universal preprocessors and postprocessors

New in version 0.13.0.

The previous section describes how to specify a preprocessor or postprocessor on a
per-API (that is, a per-model) basis. If you want a function to be executed for all APIs
created by a APIManager, you can use the preprocessors or postprocessors keyword
arguments in the constructor of the APIManager class. These keyword arguments have
the same format as the corresponding ones in the APIManager.create_api() method
as described above. Functions specified in this way are prepended to the list of pre-
processors or postprocessors specified in the APIManager.create_api() method.

This may be used, for example, if all POST requests require authentication:

from flask import Flask

from flask_restless import APIManager

from flask_restless import ProcessingException
from flask_login import current_user

from mymodels import User

from mymodels import session

def auth_func(xargs, **kw):

1.5. Customizing the ReSTful interface 49

https://jsonapi.org/format/#error-objects
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://tools.ietf.org/html/rfc7231#section-4.3.3

Flask-Restless Documentation, Release 1.0.0b2.dev

if not current_user.is_authenticated():
raise ProcessingException(detail="Not authenticated',6 status=401)

app = Flask(__name__)

preprocessors = {'POST_RESOURCE': [auth_funcl}

api_manager = APIManager(app, session=session, preprocessors=preprocessors)
api_manager.create_api(User)

Preprocessors for collections

When the server receives, for example, a GET request for /api/person, Flask-Restless
interprets this request as a search with no filters (that is, a search for all instances of
Person without exception). In other words, a GET request to /api/person is roughly
equivalent to the same request to /api/person?filter[objects]=[]. Therefore, if you
want to filter the set of Person instances returned by such a request, you can create
a GET_COLLECTION preprocessor that appends filters to the filters keyword argument.
For example:

def preprocessor(filters=None, **kw):
This checks if the preprocessor function is being called before a
request that does not have search parameters.
if filters is None:
return
Create the filter you wish to add; in this case, we include only
instances with *‘id‘‘ not equal to 1.
filt = dict(name='id', op='neq', val=1)
Append your filter to the list of filters.
filters.append(filt)

preprocessors = {'GET_COLLECTION': [preprocessor]}
manager.create_api(Person, preprocessors=preprocessors)

When does the session get committed?
For requests to create a resource, update a resource, or delete a resource, the session
is flushed before the postprocessor is executed and committed after. Therefore, if a

postprocessor raises a ProcessingException, then the session has not been committed,
so your code can then decide to, for example, roll back the session or commit it.

Requiring authentication for some methods

If you want certain HTTP methods to require authentication, use preprocessors:

from flask import Flask
from flask_restless import APIManager
from flask_restless import ProcessingException

50 Chapter 1. User’s guide

http://tools.ietf.org/html/rfc7231#section-4.3.1
http://tools.ietf.org/html/rfc7231#section-4.3.1

Flask-Restless Documentation, Release 1.0.0b2.dev

from flask_login import current_user
from mymodels import User

def auth_func(*xargs, **kwargs):
if not current_user.is_authenticated():
raise ProcessingException(detail="Not authenticated', status=401)

app = Flask(__name__)

api_manager = APIManager(app)

Set ‘auth_func® to be a preprocessor for any type of endpoint you want to
be guarded by authentication.

preprocessors = {'GET_RESOURCE': [auth_func], ...}
api_manager.create_api(User, preprocessors=preprocessors)

For a more complete example wusing Flask-Login, see the examples/
server_configurations/authentication directory in the source distribution, or
view the authentication example online.

HTTP methods

By default, the APIManager.create_api() method creates a read-only interface; re-
quests with HTTP methods other than GET will cause a response with 405 Method
Not Allowed. To explicitly specify which methods should be allowed for the end-
point, pass a list as the value of keyword argument methods:

apimanager.create_api(Person, methods=['GET', 'POST', 'DELETE'])

This creates an endpoint at /api/person which responds to GET, POST, and DELETE
methods, but not to PATCH.

If you allow GET requests, you will have access to endpoints of the following forms.
GET /api/person

GET /api/person/1

GET /api/person/1/comments

GET /api/person/1/relationships/comments

GET /api/person/1/comments/2

The first four are described explicitly in the JSON API specification. The last is partic-
ular to Flask-Restless; it allows you to access a particular related resource via a rela-
tionship on another resource.

If you allow DELETE requests, you will have access to endpoints of the form
DELETE /api/person/1
If you allow POST requests, you will have access to endpoints of the form

POST /api/person

1.5. Customizing the ReSTful interface 51

https://packages.python.org/Flask-Login
https://github.com/jfinkels/flask-restless/tree/master/examples/server_configurations/authentication
http://tools.ietf.org/html/rfc7231#section-4.3.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.6
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.6
http://tools.ietf.org/html/rfc7231#section-4.3.1
http://tools.ietf.org/html/rfc7231#section-4.3.3
http://tools.ietf.org/html/rfc7231#section-4.3.5
http://tools.ietf.org/html/rfc5789#section-2
http://tools.ietf.org/html/rfc7231#section-4.3.1
http://tools.ietf.org/html/rfc7231#section-4.3.5
http://tools.ietf.org/html/rfc7231#section-4.3.3

Flask-Restless Documentation, Release 1.0.0b2.dev

Finally, if you allow PATCH requests, you will have access to endpoints of the follow-
ing forms.

PATCH /api/person/1

POST /api/person/1/relationships/comments
PATCH /api/person/1/relationships/comments
DELETE /api/person/1/relationships/comments

The last three allow the client to interact with the relationships of a particular resource.
The last two must be enabled explicitly by setting the allow_to_many_replacement
and allow_delete_from_to_many_relationships, respectively, to True when creating
an API using the APIManager.create_api() method.

API prefix

To create an API at a prefix other than the default /api, use the url_prefix keyword
argument:

apimanager.create_api(Person, url_prefix="'/api/v2")

Then your API for Person will be available at /api/v2/person.

Collection name

By default, the name of the collection that appears in the URLs of the API will be the
name of the table that backs your model. If your model is a SQLAlchemy model, this
will be the value of its __table__.name attribute. If your model is a Flask-SQLAlchemy
model, this will be the lowercase name of the model with camel case changed to all-
lowercase with underscore separators. For example, a class named MyModel implies
a collection name of 'my_model'. Furthermore, the URL at which this collection is
accessible by default is /api/my_model.

To provide a different name for the model, provide a string to the collection_name key-
word argument of the APIManager . create_api() method:

apimanager.create_api(Person, collection_name='people')

Then the API will be exposed at /api/people instead of /api/person.

Note: According to the JSON API specification,

Note: This spec is agnostic about inflection rules, so the value of type can
be either plural or singular. However, the same value should be used con-
sistently throughout an implementation.

It's up to you to make sure your collection names are either all plural or all singular!

52 Chapter 1. User’s guide

http://tools.ietf.org/html/rfc5789#section-2
http://jsonapi.org/format/#document-resource-object-identification

Flask-Restless Documentation, Release 1.0.0b2.dev

Specifying one of many primary keys

If your model has more than one primary key (one called id and one called username,
for example), you should specify the one to use:

manager.create_api(User, primary_key='username')

If you do this, Flask-Restless will create URLs like /api/user/myusername instead of
/api/user/123.

Capturing validation errors

By default, no validation is performed by Flask-Restless; if you want validation, imple-
ment it yourself in your database models. However, by specifying a list of exceptions
raised by your backend on validation errors, Flask-Restless will forward messages
from raised exceptions to the client in an error response.

For example, if your validation framework includes an exception called
ValidationError, then call the APIManager.create_api() method with the
validation_exceptions keyword argument:

from cool_validation_framework import ValidationError
apimanager.create_api(Person, validation_exceptions=[ValidationError],
methods=["'PATCH"', 'POST'])

Note: Currently, Flask-Restless expects that an instance of a specified validation error
will have a errors attribute, which is a dictionary mapping field name to error de-
scription (note: one error per field). If you have a better, more general solution to this
problem, please visit our issue tracker.

Now when you make POST and PATCH requests with invalid fields, the JSON re-
sponse will look like this:

HTTP/1.1 400 Bad Request

{
"errors”: [
{
"status": 400,
"title": "Validation error”,
"detail”: "age: must be an integer”
}
]
}

1.5. Customizing the ReSTful interface 53

https://github.com/jfinkels/flask-restless/issues
http://tools.ietf.org/html/rfc7231#section-4.3.3
http://tools.ietf.org/html/rfc5789#section-2

Flask-Restless Documentation, Release 1.0.0b2.dev

Custom queries

In cases where it is not possible to use preprocessors or postprocessors (Request pre-
processors and postprocessors) efficiently, you can provide a custom query attribute
to your model instead. The attribute can either be a SQLAlchemy query expres-
sion or a class method that returns a SQLAlchemy query expression. Flask-Restless
will use this query attribute internally, however it is defined, instead of the default
session.query(Model) (in the pure SQLAlchemy case) or Model.query (in the Flask-
SQLAlchemy case). Flask-Restless uses a query during most GET and PATCH requests
to find the model(s) being requested.

You may want to use a custom query attribute if you want to reveal only certain in-
formation to the client. For example, if you have a set of people and you only want
to reveal information about people from the group named “students”, define a query
class method this way:

class Group(Base):
__tablename__ = 'group'
id = Column(Integer, primary_key=True)
groupname = Column(Unicode)
people = relationship('Person')

class Person(Base):
__tablename__ = 'person'
id = Column(Integer, primary_key=True)
group_id = Column(Integer, ForeignKey('group.id"'))

group = relationship('Group")

@classmethod
def query(cls):
original_query = session.query(cls)
condition = (Group.groupname == 'students')
return original_query.join(Group).filter(condition)

Then GET requests to, for example, /api/person will only reveal instances of Person
who also are in the group named “students”.

Bulk operations

Bulk operations are not supported, though they may be in the future.

Custom serialization and deserialization

You can provide a custom serializer using the serializer_class keyword argument
and a custom deserializer using the deserializer_class keyword argument. For a
full description of how to use these arguments, see Custom serialization.

54 Chapter 1. User’s guide

http://tools.ietf.org/html/rfc7231#section-4.3.1
http://tools.ietf.org/html/rfc5789#section-2
http://tools.ietf.org/html/rfc7231#section-4.3.1

Flask-Restless Documentation, Release 1.0.0b2.dev

Request preprocessors and postprocessors

You can have custom code executed before or after Flask-Restless handles the incom-
ing request by using the preprocessors and postprocessors keyword arguments, re-
spectively. For a full description of how to use these arguments, see Request preproces-
sors and postprocessors.

Common SQLAIchemy setups

Flask-Restless automatically handles SQLAlchemy models defined with association
proxies and polymorphism.

Association proxies

Flask-Restless handles many-to-many relationships transparently through association
proxies. It exposes the remote table in the relationships element of a resource in the
JSON document and hides the association table or association object.

Proxying association objects

For more information on using association proxies with association objects, see the ‘Simplifying
Assocation Objects’_ section of the SQLAlchemy documentation.

When proxying a to-many relationship via an association object, the related resources
will appear in the relationships element of the resource object in addition to the as-
sociation object. For example, in the following setup, each article has a to-many rela-
tionship to tags via the ArticleTag object:

from sqlalchemy import Column, Integer, Unicode, ForeignKey
from sqlalchemy.ext.associationproxy import association_proxy
from sqlalchemy.ext.declarative import declarative_base

from sqlalchemy.orm import relationship

Base = declarative_base()

class Article(Base):
__tablename__ = 'article'
id = Column(Integer, primary_key=True)
articletags = relationship('ArticleTag"',
cascade='all, delete-orphan")
tags = association_proxy('articletags', 'tag',
creator=lambda tag: ArticleTag(tag=tag))

class ArticleTag(Base):
__tablename__ = 'articletag'
article_id = Column(Integer, ForeignKey('article.id"),

1.6. Common SQLAlchemy setups 55

http://docs.sqlalchemy.org/en/latest/orm/extensions/associationproxy.html
http://docs.sqlalchemy.org/en/latest/orm/extensions/associationproxy.html
http://docs.sqlalchemy.org/en/latest/orm/inheritance.html

Flask-Restless Documentation, Release 1.0.0b2.dev

primary_key=True)
tag_id = Column(Integer, ForeignKey('tag.id'), primary_key=True)
tag = relationship('Tag')

class Tag(Base):
__tablename__ = 'tag
id = Column(Integer, primary_key=True)
name = Column(Unicode)

Resource objects of type 'article' will have both an articletags relationship as well
as a tags relationship that proxies directly to the Tag resource through the ArticleTag
table.

{
"data": {
"id": "1",
"type": "article”,
"relationships": {
"articletags": {
"data": [
{
"id": "1",
"type": "articletag”
},
{
"id": "2",
"type": "articletag”
}
]
},
"tags": {
"data": [
{
"id": "1",
"type": "tag"
1,
{
"id": "2",
"type": "tag"
}
]
}
}
}
}

If you wish to exclude the association object relationship, use the exclude keyword
argument when creating the API for the Article model:

56 Chapter 1. User’s guide

Flask-Restless Documentation, Release 1.0.0b2.dev

manager.create_api(Article, exclude=['articletags'])

Proxying association tables

For more information on using association proxies with association objects, see the ‘Simplifying
Scalar Collections’_ section of the SQLAlchemy documentation.

When proxying an attribute of a to-many relationship via an association table, the
attribute will appear in the attributes element of the resource object and the to-many
relationship will appear in the relationships element of the resource object but the
association table will not appear. For example, in the following setup, each article has
an association proxy tag_names which is a list of the name attribute of each related tag:

from sqlalchemy import Column, Integer, Unicode, ForeignKey
from sqlalchemy.ext.associationproxy import association_proxy
from sqlalchemy.ext.declarative import declarative_base

from sqlalchemy.orm import relationship

Base = declarative_base()

class Article(Base):
__tablename__ = 'article'
id = Column(Integer, primary_key=True)
tags = relationship('Tag', secondary=lambda: articletags_table)
tag_names = association_proxy('tags', 'name’,
creator=lambda s: Tag(name=s))

class Tag(Base):
__tablename__ = 'tag'’
id = Column(Integer, primary_key=True)
name = Column(Unicode)

articletags_table = \
Table('articletags', Base.metadata,
Column('article_id', Integer, ForeignKey('article.id"),
primary_key=True),
Column('tag_id', Integer, ForeignKey('tag.id'),
primary_key=True))

Resource objects of type 'article' will have a tag_names attribute that is a list of tag
names in addition to a tags relationship. The intermediate articletags table does not
appear as a relationship in the resource object:

{
"data": {
"id": "1",
"type": "article",
"attributes”: {
"tag_names”: [

1.6. Common SQLAlchemy setups 57

Flask-Restless Documentation, Release 1.0.0b2.dev

"foo",
"bar"
]
},
"relationships”: {
"tags": {
"data": [
{
"id": "1",
"type": "tag"
},
{
"id": "2",
"type": "tag”
}
1,
}
}
}
}
Polymorphic models

Flask-Restless automatically handles polymorphic models defined using either single
table or joined table inheritance. We have made some design choices we believe are
reasonable. Requests to create, update, or delete a resource must specify a type that
matches the collection name of the endpoint. This means you cannot request to create
a resource of the subclass type at the endpoint for the superclass type, for example. On
the other hand, requests to fetch a collection of objects that have a subclass will yield a
response that includes all resources of the superclass and all resources of any subclass.

For example, consider a setup where there are employees and some employees are
managers:

from sqlalchemy import Column, Integer, Enum
from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

class Employee(Base):
__tablename__ = 'employee'
id = Column(Integer, primary_key=True)
type = Column(Enum('employee', 'manager'), nullable=False)
__mapper_args__ = {
'polymorphic_on': type,
"polymorphic_identity': 'employee'

}

class Manager(Employee):

58 Chapter 1. User’s guide

Flask-Restless Documentation, Release 1.0.0b2.dev

__mapper_args__ = {

"polymorphic_identity': 'manager'

Collection name

When creating an API for these models, Flask-Restless chooses the polymorphic iden-
tity as the collection name:

>>> from flask.ext.restless import collection_name
>>>

>>> manager.create_api(Employee)

>>> manager.create_api(Manager)

>>> collection_name(Employee)

"employee’

>>> collection_name(Manager)

'manager’

Creating and updating resources

Creating a resource require the type element of the resource object in the request to
match the collection name of the endpoint:

>>> from flask import json
>>> import requests

>>>
>>> headers = {
"Accept': 'application/vnd.api+json',
.. '"Content-Type': 'application/vnd.api+json'’
...}
>>> resource = {'data': {'type': 'employee'}}

>>> data = json.dumps(resource)

>>> response = requests.post('https://example.com/api/employee', data=data,
. headers=headers)

>>> response.status_code
201

>>> resource = {'data': {'type': 'manager'}}

>>> data = json.dumps(resource)

>>> response = requests.post('https://example.com/api/manager', data=data,
. headers=headers)

>>> response.status_code
201

If the type does not match the collection name for the endpoint, the server responds
with a 409 Conflict:

>>> resource = {'data': {'type': 'manager'}}
>>> data = json.dumps(resource)

1.6. Common SQLAlchemy setups 59

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.10

Flask-Restless Documentation, Release 1.0.0b2.dev

>>> response = requests.post('https://example.com/api/employee’, data=data,
R headers=headers)

>>> response.status_code
409

The same rules apply for updating resources.

Fetching resources

Assume the database contains an employee with ID 1 and a manager with ID 2. You
can only fetch each individual resource at the endpoint for the exact type of that re-
source:

>>> response = requests.get('https://example.com/api/employee/1")
>>> response.status_code

200

>>> response = requests.get('https://example.com/api/manager/2")
>>> response.status_code

200

You cannot access individual resources of the subclass at the endpoint for the super-
class:

>>> response = requests.get('https://example.com/api/employee/2")
>>> response.status_code

404

>>> response = requests.get('https://example.com/api/manager/1")
>>> response.status_code

404

Fetching from the superclass endpoint yields a response that includes resources of the
superclass and resources of the subclass:

>>> response = requests.get('https://example.com/api/employee")
>>> document = json.loads(response.data)
>>> resources = document['data']

>>> employee, manager = resources

>>> employeel['type']

‘employee’

>>> employee['id']

K

>>> manager['type']

'manager’

>>> manager['id']

X

60 Chapter 1. User’s guide

Flask-Restless Documentation, Release 1.0.0b2.dev

Deleting resources

Assume the database contains an employee with ID 1 and a manager with ID 2. You
can only delete from the endpoint that matches the exact type of the resource:

>>>
>>>
404
>>>
>>>
404
>>>
>>>
204
>>>
>>>
204

response

response.

response
response

response

response.

response
response

= requests.delete('https
status_code

= requests.delete('https

.status_code

= requests.delete('https
status_code

= requests.delete('https

.status_code

://example.com/api/employee/2"')

://example.com/api/manager/1")

://example.com/api/employee/1")

://example.com/api/manager/2")

1.6. Common SQLAlchemy setups

61

Flask-Restless Documentation, Release 1.0.0b2.dev

62 Chapter 1. User’s guide

CHAPTER 2

API reference

A technical description of the classes, functions, and idioms of Flask-Restless.

API

This part of the documentation documents all the public classes and functions in Flask-
Restless.

The API Manager class

class flask_restless.APIManager (app=None, session=None,
flask_sqlalchemy_db=None, preprocessors=None,

postprocessors=None, url_prefix=None)
Provides a method for creating a public ReSTful JSON API with respect to a

given Flask application object.

The Flask object can either be specified in the constructor, or after instantiation
time by calling the init_app() method.

app is the Flask object containing the user’s Flask application.
session is the Session object in which changes to the database will be made.

flask_sqlalchemy_db is the SQLAlchemy object with which app has been registered
and which contains the database models for which API endpoints will be created.

If flask_sqlalchemy_db is not None, session will be ignored.

For example, to use this class with models defined in pure SQLAlchemy:

63

http://flask.pocoo.org/docs/api/#flask.Flask
http://flask.pocoo.org/docs/api/#flask.Flask
http://flask.pocoo.org/docs/api/#flask.Flask
http://docs.sqlalchemy.org/en/latest/orm/session_api.html#sqlalchemy.orm.session.Session
http://flask-sqlalchemy.pocoo.org/api/#flask_sqlalchemy.SQLAlchemy

Flask-Restless Documentation, Release 1.0.0b2.dev

from flask import Flask

from flask_restless import APIManager

from sqlalchemy import create_engine

from sqlalchemy.orm.session import sessionmaker

engine = create_engine('sqlite:////tmp/mydb.sqglite")
Session = sessionmaker(bind=engine)

mysession = Session()

app = Flask(__name__)

apimanager = APIManager(app, session=mysession)

and with models defined with Flask-SQLAlIchemy:

from flask import Flask
from flask_restless import APIManager
from flask_sqglalchemy import SQLAlchemy

app = Flask(__name__)
db = SQLALchemy(app)
apimanager = APIManager(app, flask_sqlalchemy_db=db)

url_prefix is the URL prefix at which each API created by this instance will be ac-
cessible. For example, if this is set to 'foo"', then this method creates endpoints of
the form /foo/<collection_name> when create_api() is called. If the url_prefix
is set in the create_api(), the URL prefix set in the constructor will be ignored
for that endpoint.

postprocessors and preprocessors must be dictionaries as described in the section
Request preprocessors and postprocessors. These preprocessors and postprocessors
will be applied to all requests to and responses from APIs created using this API-
Manager object. The preprocessors and postprocessors given in these keyword
arguments will be prepended to the list of processors given for each individ-
ual model when using the create_api_blueprint() method (more specifically,
the functions listed here will be executed before any functions specified in the
create_api_blueprint() method). For more information on using preprocessors
and postprocessors, see Request preprocessors and postprocessors.

create_api (*args, “kw)
Creates and possibly registers a ReSTful API blueprint for the given
SQLAlchemy model.

If a Flask application was provided in the constructor of this class, the cre-
ated blueprint is immediately registered on that application. Otherwise,
the blueprint is stored for later registration when the init_app() method
is invoked. In that case, the blueprint will be registered each time the
init_app() method is invoked.

The keyword arguments for this method are exactly the same as those for
create_api_blueprint(), and are passed directly to that method. However,
unlike that method, this method accepts only a single positional argument,
model, the SQLAlchemy model for which to create the API. A UUID will be

64

Chapter 2. API reference

Flask-Restless Documentation, Release 1.0.0b2.dev

automatically generated for the blueprint name.

For example, if you only wish to create APIs on a single Flask application:

app = Flask(__name__)

session = ... # create the SQLAlchemy session
manager = APIManager (app=app, session=session)
manager.create_api(User)

If you want to create APIs before having access to a Flask application, you
can call this method before calling init_app():

session = ... # create the SQLAlchemy session
manager = APIManager(session=session)
manager.create_api(User)

later...
app = Flask(__name__)
manager.init_app(app)

If you want to create an API and register it on multiple Flask applications,
you can call this method once and init_app() multiple times with different
app arguments:

session # create the SQLAlchemy session
manager = APIManager(session=session)
manager.create_api(User)

later...

appl = Flask('applicationl"')
app2 = Flask('application2")
manager.init_app(app1)
manager.init_app(app2)

create_api_blueprint (name, model, methods=frozenset({"GET’}),

url_prefix=None, collection_name=None, al-
low_functions=False, only=None, exclude=None, addi-
tional_attributes=None, validation_exceptions=None,
page_size=10, max_page_size=100, preproces-
sors=None, postprocessors=None, primary_key=None,
serializer_class=None, deserializer_class=None, in-
cludes=None, allow_to_many_replacement=False,
allow_delete_from_to_many_relationships=False,

allow_client_generated_ids=False)
Creates and returns a ReSTful API interface as a blueprint, but does not

register it on any flask.Flask application.

The endpoints for the API for model will be available at <url_prefix>/
<collection_name>. If collection_name is None, the lowercase name of the
provided model class will be used instead, as accessed by model.__table__.
name. (If any black magic was performed on model.__table__, this will be

J—

2.1. API

65

http://flask.pocoo.org/docs/api/#flask.Flask

Flask-Restless Documentation, Release 1.0.0b2.dev

reflected in the endpoint URL.) For more information, see Collection name.

This function must be called at most once for each model for which you
wish to create a ReSTful API. Its behavior (for now) is undefined if called
more than once.

This function returns the flask.Blueprint object that handles the endpoints
for the model. The returned Blueprint has not been registered with the
Flask application object specified in the constructor of this class, so you
will need to register it yourself to make it available on the application. If
you don’t need access to the Blueprint object, use create_api_blueprint()
instead, which handles registration automatically.

name is the name of the blueprint that will be created.

model is the SQLAlchemy model class for which a ReSTful interface will be
created.

app is the Flask object on which we expect the blueprint created in this
method to be eventually registered. If not specified, the Flask application
specified in the constructor of this class is used.

methods is a list of strings specifying the HTTP methods that will be made
available on the ReSTful API for the specified model.

oIf 'GET' is in the list, GET requests will be allowed at endpoints for
collections of resources, resources, to-many and to-one relations of re-
sources, and particular members of a to-many relation. Furthermore,
relationship information will be accessible. For more information, see
Fetching resources and relationships.

oIf 'POST"' is in the list, POST requests will be allowed at endpoints for
collections of resources. For more information, see Creating resources.

oIf 'DELETE' is in the list, DELETE requests will be allowed at endpoints
for individual resources. For more information, see Deleting resources.

oIf 'PATCH' is in the list, PATCH requests will be allowed at end-
points for individual resources. Replacing a to-many relationship
when issuing a request to update a resource can be enabled by setting
allow_to_many_replacement to True.

Furthermore, to-one relationships can be updated at the relation-
ship endpoints under an individual resource via PATCH requests.
This also allows you to add to a to-many relationship via the
POST method, delete from a to-many relationship via the DELETE
method (if allow_delete_from_to_many_relationships is set to True),
and replace a to-many relationship via the PATCH method (if
allow_to_many_replacement is set to True). For more information, see
Updating resources and Updating relationships.

The default set of methods provides a read-only interface (that is, only GET
requests are allowed).

66 Chapter 2. API reference

http://flask.pocoo.org/docs/api/#flask.Blueprint
http://flask.pocoo.org/docs/api/#flask.Blueprint
http://flask.pocoo.org/docs/api/#flask.Flask
http://flask.pocoo.org/docs/api/#flask.Blueprint
http://flask.pocoo.org/docs/api/#flask.Flask
http://tools.ietf.org/html/rfc7231#section-4.3.1
http://tools.ietf.org/html/rfc7231#section-4.3.3
http://tools.ietf.org/html/rfc7231#section-4.3.5
http://tools.ietf.org/html/rfc5789#section-2
http://tools.ietf.org/html/rfc5789#section-2
http://tools.ietf.org/html/rfc7231#section-4.3.3
http://tools.ietf.org/html/rfc7231#section-4.3.5
http://tools.ietf.org/html/rfc5789#section-2
http://tools.ietf.org/html/rfc7231#section-4.3.1

Flask-Restless Documentation, Release 1.0.0b2.dev

url_prefix is the URL prefix at which this API will be accessible. For example,
if this is set to '/foo', then this method creates endpoints of the form /
foo/<collection_name>. If not set, the default URL prefix specified in the
constructor of this class will be used. If that was not set either, the default
'/api' will be used.

collection_name is the name of the collection specified by the given model
class to be used in the URL for the ReSTful API created. If this is not spec-
ified, the lowercase name of the model will be used. For example, if this
is set to 'foo', then this method creates endpoints of the form /api/foo,
/api/foo/<id>, etc.

If allow_functions is True, then GET requests to /api/eval/
<collection_name> will return the result of evaluating SQL functions
specified in the body of the request. For information on the request format,
see Function evaluation. This is False by default.

Warning: If allow_functions is True, you must not create an API for a
model whose name is 'eval'.

If only is not None, it must be a list of columns and/or relationships of the
specified model, given either as strings or as the attributes themselves. If it
is a list, only these fields will appear in the resource object representation
of an instance of model. In other words, only is a whitelist of fields. The id
and type elements of the resource object will always be present regardless
of the value of this argument. If only contains a string that does not name a
column in model, it will be ignored.

If additional_attributes is a list of strings, these attributes of the model will
appear in the JSON representation of an instance of the model. This is useful
if your model has an attribute that is not a SQLAlchemy column but you
want it to be exposed. If any of the attributes does not exist on the model, a
AttributeError is raised.

If exclude is not None, it must be a list of columns and/or relationships of the
specified model, given either as strings or as the attributes themselves. If it is
a list, all fields except these will appear in the resource object representation
of an instance of model. In other words, exclude is a blacklist of fields. The id
and type elements of the resource object will always be present regardless
of the value of this argument. If exclude contains a string that does not name
a column in model, it will be ignored.

If either only or exclude is not None, exactly one of them must be specified; if
both are not None, then this function will raise a I1legalArgumentError.

See Specifying which fields appear in responses for more information on speci-
tying which fields will be included in the resource object representation.

validation_exceptions is the tuple of possible exceptions raised by validation
of your database models. If this is specified, validation errors will be cap-

2.1. API

67

http://tools.ietf.org/html/rfc7231#section-4.3.1
https://docs.python.org/3/library/exceptions.html#AttributeError

Flask-Restless Documentation, Release 1.0.0b2.dev

tured and forwarded to the client in the format described by the JSON API
specification. For more information on how to use validation, see Capturing
validation errors.

page_size must be a positive integer that represents the default page size for
responses that consist of a collection of resources. Requests made by clients
may override this default by specifying page_size as a query parameter.
max_page_size must be a positive integer that represents the maximum page
size that a client can request. Even if a client specifies that greater than
max_page_size should be returned, at most max_page_size results will be re-
turned. For more information, see Pagination.

serializer_class and deserializer_class are custom serializer and deserializer
classes. The former must be a subclass of DefaultSerializer and the latter
a subclass of DefaultDeserializer. For more information on using these,
see Custom serialization.

preprocessors is a dictionary mapping strings to lists of functions. Each
key represents a type of endpoint (for example, 'GET_RESOURCE' or
"GET_COLLECTION'"). Each value is a list of functions, each of which will be
called before any other code is executed when this API receives the corre-
sponding HTTP request. The functions will be called in the order given
here. The postprocessors keyword argument is essentially the same, except
the given functions are called after all other code. For more information on
preprocessors and postprocessors, see Request preprocessors and postproces-
sors.

primary_key is a string specifying the name of the column of model to use as
the primary key for the purposes of creating URLs. If the model has exactly
one primary key, there is no need to provide a value for this. If model has
two or more primary keys, you must specify which one to use. For more
information, see Specifying one of many primary keys.

includes must be a list of strings specifying which related resources will be
included in a compound document by default when fetching a resource ob-
ject representation of an instance of model. Each element of includes is the
name of a field of model (that is, either an attribute or a relationship). For
more information, see Inclusion of related resources.

If allow_to_many_replacement is True and this API allows PATCH requests,
the server will allow two types of requests. First, it allows the client to
replace the entire collection of resources in a to-many relationship when
updating an individual instance of the model. Second, it allows the client
to replace the entire to-many relationship when making a PATCH request
to a to-many relationship endpoint. This is False by default. For more
information, see Updating resources and Updating relationships.

If allow_delete_from_to_many_relationships is True and this API allows
PATCH requests, the server will allow the client to delete resources from
any to-many relationship of the model. This is False by default. For more
information, see Updating relationships.

68

Chapter 2. API reference

http://tools.ietf.org/html/rfc5789#section-2
http://tools.ietf.org/html/rfc5789#section-2
http://tools.ietf.org/html/rfc5789#section-2

Flask-Restless Documentation, Release 1.0.0b2.dev

If allow_client_generated_ids is True and this API allows POST requests, the
server will allow the client to specify the ID for the resource to create. JSON
API recommends that this be a UUID. This is False by default. For more
information, see Creating resources.

init_app(app)

Registers any created APIs on the given Flask application.

This function should only be called if no Flask application was provided in
the app keyword argument to the constructor of this class.

When this function is invoked, any blueprint created by a previous
invocation of create_api() will be registered on app by calling the
register_blueprint() method.

To use this method with pure SQLAlchemy, for example:

from flask import Flask

from flask_restless import APIManager

from sqlalchemy import create_engine

from sqlalchemy.orm.session import sessionmaker

engine = create_engine('sqlite:////tmp/mydb.sqglite")
Session = sessionmaker(bind=engine)
mysession = Session()

Here create model classes, for example User, Comment, etc.

Create the API manager and create the APIs.
apimanager = APIManager(session=mysession)
apimanager.create_api(User)
apimanager.create_api(Comment)

Later, call ‘“init_app" to register the blueprints for the
APIs created earlier.

app = Flask(__name__)

apimanager.init_app(app)

and with models defined with Flask-SQLAlchemy:

from flask import Flask

from flask_restless import APIManager
from flask_sqlalchemy import SQLAlchemy
db = SQLALchemy(app)

Here create model classes, for example User, Comment, etc.

Create the API manager and create the APIs.
apimanager = APIManager(flask_sqglalchemy_db=db)

2.1. API

69

http://tools.ietf.org/html/rfc7231#section-4.3.3
http://flask.pocoo.org/docs/api/#flask.Flask.register_blueprint

Flask-Restless Documentation, Release 1.0.0b2.dev

apimanager.create_api(User)
apimanager.create_api(Comment)

Later, call ‘“init_app" to register the blueprints for the
APIs created earlier.

app = Flask(__name__)

apimanager.init_app(app)

class flask_restless.IllegalArgumentError

This exception is raised when a calling function has provided illegal arguments
to a function or method.

Search helper functions

flask_restless.register_operator(name, op)

Register an operator so the system can create expressions involving it.

name is a string naming the operator and op is a function that takes up to two
arguments as input. If the name provided is one of the built-in operators (see
Operators), it will override the default behavior of that operator. For example,
calling

register_operator('gt', myfunc)

will cause myfunc() to be invoked in the SQLAlchemy expression created for this
operator instead of the default “greater than” operator.

Global helper functions

flask_restless.collection_name (model, _apimanager=None)

Returns the collection name for the specified model, as specified by the
collection_name keyword argument to APIManager.create_api() when it was
previously invoked on the model.

model is a SQLAlchemy model class. This should be a model on which
APIManager.create_api_blueprint() (or APIManager.create_api()) has been
invoked previously. If no API has been created for it, this function raises a Val-
ueError.

If _apimanager is not None, it must be an instance of APIManager. Restrict our
search for endpoints exposing model to only endpoints created by the specified
APIManager instance.

For example, suppose you have a model class Person and have created the ap-
propriate Flask application and SQLAlchemy session:

>>> from mymodels import Person
>>> manager = APIManager(app, session=session)
>>> manager.create_api(Person, collection_name="'people')

70

Chapter 2. API reference

Flask-Restless Documentation, Release 1.0.0b2.dev

>>> collection_name(Person)
'people’

This function is the inverse of model_for():

>>> manager.collection_name(manager.model_for('people'))
'people’

>>> manager.model_for(manager.collection_name(Person))
<class 'mymodels.Person'>

flask_restless.model_for (collection_name, _apimanager=None)
Returns the model corresponding to the given collection name, as specified by
the collection_name keyword argument to APIManager.create_api() when it
was previously invoked on the model.

collection_name is a string corresponding to the “type” of a model. This should
be a model on which APIManager.create_api_blueprint() (or APIManager.
create_api()) has been invoked previously. If no API has been created for it,
this function raises a ValueError.

If _apimanager is not None, it must be an instance of APIManager. Restrict our
search for endpoints exposing model to only endpoints created by the specified
APIManager instance.

For example, suppose you have a model class Person and have created the ap-
propriate Flask application and SQLAlchemy session:

>>> from mymodels import Person

>>> manager = APIManager(app, session=session)

>>> manager.create_api(Person, collection_name="'people"')
>>> model_for('people')

<class 'mymodels.Person'>

This function is the inverse of collection_name():

>>> manager.collection_name(manager.model_for('people'))
'people’

>>> manager.model_for(manager.collection_name(Person))
<class 'mymodels.Person'>

flask_restless.serializer_for (model, _apimanager=None)
Returns the callable serializer object for the specified model, as specified by
the serializer keyword argument to APIManager.create_api() when it was pre-
viously invoked on the model.

model is a SQLAlchemy model class. This should be a model on which
APIManager.create_api_blueprint() (or APIManager.create_api()) has been
invoked previously. If no API has been created for it, this function raises a Val-
ueError.

If _apimanager is not None, it must be an instance of APIManager. Restrict our
search for endpoints exposing model to only endpoints created by the specified

2.1. API 71

Flask-Restless Documentation, Release 1.0.0b2.dev

APIManager instance.

For example, suppose you have a model class Person and have created the ap-
propriate Flask application and SQLAlchemy session:

>>> from mymodels import Person

>>> def my_serializer(model, *args, xxkw):
return something cool here...
return {3}

>>> manager = APIManager(app, session=session)

>>> manager.create_api(Person, serializer=my_serializer)
>>> serializer_for(Person)

<function my_serializer at 0x...>

flask_restless.primary_key_for (model, _apimanager=None)
Returns the primary key to be used for the given model or model instance, as
specified by the primary_key keyword argument to APIManager.create_api()
when it was previously invoked on the model.

primary_key is a string corresponding to the primary key identifier to be used
by flask-restless for a model. If no primary key has been set at the flask-restless
level (by using the primary_key keyword argument when calling APIManager.
create_api_blueprint(), the model’s primary key will be returned. If no API
has been created for the model, this function raises a ValueError.

If _apimanager is not None, it must be an instance of APIManager. Restrict our
search for endpoints exposing model to only endpoints created by the specified
APIManager instance.

For example, suppose you have a model class Person and have created the ap-
propriate Flask application and SQLAlchemy session:

>>> from mymodels import Person

>>> manager = APIManager(app, session=session)

>>> manager.create_api(Person, primary_key='name')
>>> primary_key_for(Person)

"name’

>>> my_person = Person(name="Bob")

>>> primary_key_for(my_person)

"name’

This is in contrast to the typical default:

>>> manager = APIManager(app, session=session)
>>> manager.create_api(Person)

>>> primary_key_for(Person)

lidl

flask_restless.url_for(model, instid=None, relationname=None, relationin-
stid=None, _apimanager=None, **kw)
Returns the URL for the specified model, similar to flask.url_for().

72 Chapter 2. API reference

http://flask.pocoo.org/docs/api/#flask.url_for

Flask-Restless Documentation, Release 1.0.0b2.dev

model is a SQLAlchemy model class. This should be a model on which
APIManager.create_api_blueprint() (or APIManager.create_api()) has been
invoked previously. If no API has been created for it, this function raises a Val-
ueError.

If _apimanager is not None, it must be an instance of APIManager. Restrict our
search for endpoints exposing model to only endpoints created by the specified
APIManager instance.

The resource_id, relation_name, and relationresource_id keyword arguments allow
you to get the URL for a more specific sub-resource.

For example, suppose you have a model class Person and have created the ap-
propriate Flask application and SQLAlchemy session:

>>> manager = APIManager(app, session=session)

>>> manager.create_api(Person, collection_name="'people')

>>> url_for(Person, resource_id=3)

"http://example.com/api/people/3’

>>> url_for(Person, resource_id=3, relation_name=computers)

"http://example.com/api/people/3/computers’

>>> url_for(Person, resource_id=3, relation_name=computers,
related_resource_id=9)

'http //example.com/api/people/3/computers/9’

If a resource_id and a relation_name are provided, and you wish to determine the
relationship endpoint URL instead of the related resource URL, set the relation-
ship keyword argument to True:

>>> url_for(Person, resource_id=3, relation_name=computers,
relationship=True)
'http //example.com/api/people/3/relatonships/computers’

The remaining keyword arguments, kw, are passed directly on to flask.
url_for().

Since this function creates absolute URLs to resources linked to the given in-
stance, it must be called within a Flask request context.

Serialization and deserialization

class flask_restless.DefaultSerializer (only=None, exclude=None, addi-

tional_attributes=None, **kw)
A default implementation of a JSON API serializer for SQLAlchemy models.

The serialize() method of this class returns a complete JSON API document as
a dictionary containing the resource object representation of the given instance
of a SQLAlchemy model as its primary data. Similarly, the serialize_many()
method returns a JSON API document containing a a list of resource objects as
its primary data.

2.1. API 73

http://flask.pocoo.org/docs/api/#flask.url_for
http://flask.pocoo.org/docs/api/#flask.url_for
http://flask.pocoo.org/docs/0.10/reqcontext/

Flask-Restless Documentation, Release 1.0.0b2.dev

If only is a list, only these fields and relationships will in the returned dictio-
nary. The only exception is that the keys 'id' and 'type' will always appear,
regardless of whether they appear in only. These settings take higher priority
than the only list provided to the serialize() or serialize_many() methods: if
an attribute or relationship appears in the only argument to those method but not
here in the constructor, it will not appear in the returned dictionary.

If exclude is a list, these fields and relationships will not appear in the returned
dictionary.

If additional_attributes is a list, these attributes of the instance to be serialized will
appear in the returned dictionary. This is useful if your model has an attribute
that is not a SQLAlchemy column but you want it to be exposed.

You must not specify both only and exclude lists; if you do, the behavior of this
function is undefined.

You must not specify a field in both exclude and in additional_attributes; if you do,
the behavior of this function is undefined.

serialize(instance, only=None)
Returns a complete JSON API document as a dictionary containing the re-
source object representation of the given instance of a SQLAlchemy model
as its primary data.

The returned dictionary is suitable as an argument to flask.json.
jsonify(). Specifically, date and time objects (datetime.date, datetime.
time, datetime.datetime, and datetime.timedelta) as well as uuid.UUID
objects are converted to string representations, so no special JSON encoder
behavior is required.

If only is a list, only the fields and relationships whose names appear as
strings in only will appear in the resulting dictionary. This filter is applied
after the default fields specified in the only keyword argument to the con-
structor of this class, so only fields that appear in both only keyword argu-
ments will appear in the returned dictionary. The only exception is that the
keys 'id' and 'type' will always appear, regardless of whether they appear
in only.

Since this method creates absolute URLs to resources linked to the given
instance, it must be called within a Flask request context.

serialize_many (instances, only=None)
Serializes each instance using its model-specific serializer.

This method works for heterogeneous collections of instances (that is, col-
lections in which each instance is of a different type).

The only keyword argument must be a dictionary mapping resource type
name to list of fields representing a sparse fieldset. The values in this
dictionary must be valid values for the only keyword argument in the
DefaultSerializer.serialize() method.

74

Chapter 2. API reference

http://flask.pocoo.org/docs/api/#flask.json.jsonify
http://flask.pocoo.org/docs/api/#flask.json.jsonify
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/datetime.html#datetime.time
https://docs.python.org/3/library/datetime.html#datetime.time
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/uuid.html#uuid.UUID
http://flask.pocoo.org/docs/0.10/reqcontext/

Flask-Restless Documentation, Release 1.0.0b2.dev

class flask_restless.DefaultDeserializer (session, model, al-
low_client_generated_ids=False,
**kw)

A default implementation of a deserializer for SQLAlchemy models.

When called, this object returns an instance of a SQLAlchemy model with fields
and relations specified by the provided dictionary.

deserialize(document)
Creates and returns a new instance of the SQLAIchemy model specified in
the constructor whose attributes are given in the JSON API document.

document must be a dictionary representation of a JSON API document con-
taining a single resource as primary data, as specified in the JSON API speci-
fication. For more information, see the Resource Objects section of the JSON
API specification.

Implementation note: everything in the document other than the data element
is ignored.

class flask_restless.SerializationException(instance, —message=None, re-
source=None, *args, **kw)
Raised when there is a problem serializing an instance of a SQLAlchemy model
to a dictionary representation.

instance is the (problematic) instance on which DefaultSerializer.serialize()
was invoked.

message is an optional string describing the problem in more detail.

resource is an optional partially-constructed serialized representation of
instance.

Each of these keyword arguments is stored in a corresponding instance attribute
so client code can access them.

class flask_restless.DeserializationException (status=400, detail=None, *args,

**kw)
Raised when there is a problem deserializing a Python dictionary to an instance

of a SQLAlchemy model.

status is an integer representing the HTTP status code that corresponds to this
error. If not specified, it is set to 400, representing 400 Bad Request.

detail is a string describing the problem in more detail. If provided, this will be
incorporated in the return value of message().

Each of the keyword arguments status and detail are assigned directly to instance-
level attributes status and detail.

detail = None
A string describing the problem in more detail.

message()
Returns a more detailed description of the problem as a string.

2.1. API 75

http://jsonapi.org/format/#document-structure-resource-objects
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

Flask-Restless Documentation, Release 1.0.0b2.dev

status = None
The HTTP status code corresponding to this error.

flask_restless.simple_serialize(self, instance, only=None)

Provides basic, uncustomized serialization functionality as provided by the
DefaultSerializer.serialize() method.

This function is suitable for calling on its own, no other instantiation or cus-
tomization necessary.

flask_restless.simple_serialize_many (self, instances, only=None)

Provides basic, uncustomized serialization functionality as provided by the
DefaultSerializer.serialize_many() method.

This function is suitable for calling on its own, no other instantiation or cus-
tomization necessary.

class flask_restless.MultipleExceptions (exceptions, *args, **kw)

Raised when there are multiple problems in serialization or deserialization.

exceptions is a non-empty sequence of other exceptions that have been raised in
the code.

You may wish to raise this exception when implementing the
DefaultSerializer.serialize_many() method, for example, if there are
multiple exceptions

Pre- and postprocessor helpers

class flask_restless.ProcessingException(id_=None, links=None, status=400,

code=None, title=None, detail=None,
source=None, meta=None, *args,

**kw)
Raised when a preprocessor or postprocessor encounters a problem.

This exception should be raised by functions supplied in the preprocessors and
postprocessors keyword arguments to APIManager.create_api. When this ex-
ception is raised, all preprocessing or postprocessing halts, so any processors
appearing later in the list will not be invoked.

The keyword arguments id_, href status, code, title, detail, links, paths cor-
respond to the elements of the JSON API error object; the values of these key-
word arguments will appear in the error object returned to the client.

Any additional positional or keyword arguments are supplied directly to the
superclass, werkzeug.exceptions.HTTPException.

76

Chapter 2. API reference

http://werkzeug.pocoo.org/docs/exceptions/#werkzeug.exceptions.HTTPException

CHAPTER 3

Additional information

Meta-information on Flask-Restless.

Similar projects

If Flask-Restless doesn’t work for you, here are some similar Python packages that in-
tend to simplify the creation of ReSTful APIs (in various combinations of Web frame-
works and database backends):

e Eve

¢ Flask-Peewee

e Flask-RESTful

* simpleapi

¢ Tastypie

* Django REST framework

e Restless

Copyright and license

Flask-Restless is copyright 2011 Lincoln de Sousa and copyright 2012, 2013, 2014, 2015,
2016 Jeffrey Finkelstein and contributors, and is dual-licensed under the following two
copyright licenses:

77

http://python-eve.org
https://flask-peewee.readthedocs.org
https://flask-restful.readthedocs.org
https://simpleapi.readthedocs.org
https://django-tastypie.readthedocs.org
http://www.django-rest-framework.org
https://restless.readthedocs.org

Flask-Restless Documentation, Release 1.0.0b2.dev

¢ the GNU Affero General Public License, either version 3 or (at your option) any
later version

¢ the 3-clause BSD License

For more information, see the files LICENSE.AGPL and LICENSE.BSD in top-level direc-
tory of the source distribution.

The artwork for Flask-Restless is copyright 2012 Jeffrey Finkelstein. The couch logo is
licensed under the Creative Commons Attribute-ShareAlike 4.0 license. The original
image is a scan of a (now public domain) illustration by Arthur Hopkins in a serial
edition of “The Return of the Native” by Thomas Hardy published in October 1878.
The couch logo with the “Flask-Restless” text is licensed under the Flask Artwork
License.

The documentation is licensed under the Creative Commons Attribute-ShareAlike 4.0
license.

Changelog

Here you can see the full list of changes between each Flask-Restless release. Version
1.0.0 saw a major overhaul of Flask-Restless to make it compliant with JSON API, so
changes from prior versions may not be relevant to more recent versions.

Numbers following a pound sign (#) refer to GitHub issues.

Version 1.0.0b2-dev

This is a beta release; these changes will appear in the 1.0.0 release.
Not yet released.
* Eliminates all documentation build warnings for bad references.

* Changes serialization/deserialization to class-based implementation instead of
a function-based implementation. This also adds support for serialization of het-
erogeneous collections.

* Removes mimerender as a dependency.
e #7: allows filtering before function evaluation.
o #49: deserializers now expect a complete JSON API document.

e #200: be smarter about determining the collection_name for polymorphic mod-
els defined with single-table inheritance.

e #253: don’t assign to callable attributes of models.
e #268: adds top-level endpoint that exposes API schema.

* #479: removes duplicate (and sometimes conflicting) Content-Type header in re-
sponses.

78 Chapter 3. Additional information

http://fsf.org/licenses/agpl.html
http://creativecommons.org/licenses/by-sa/4.0
http://flask.pocoo.org/docs/license/#flask-artwork-license
http://flask.pocoo.org/docs/license/#flask-artwork-license
http://creativecommons.org/licenses/by-sa/4.0
http://creativecommons.org/licenses/by-sa/4.0
https://github.com/jfinkels/flask-restless/issues
https://mimerender.readthedocs.io
https://github.com/jfinkels/flask-restless/issues/7
https://github.com/jfinkels/flask-restless/issues/49
https://github.com/jfinkels/flask-restless/issues/200
https://github.com/jfinkels/flask-restless/issues/253
https://github.com/jfinkels/flask-restless/issues/268
https://github.com/jfinkels/flask-restless/issues/479
http://tools.ietf.org/html/rfc7231#section-3.1.1.5

Flask-Restless Documentation, Release 1.0.0b2.dev

#481#488: added negation (not) operator for search.
#492: support JSON API recommended “simple” filtering.
#508: flush the session before postprocessors, and commit after.

#534: when updating a resource, give a clearer error message if the resource ID
in the JSON document is not a JSON string.

#536: adds support for single-table inheritance.
#540: correctly support models that don’t have a column named “id”.

#545: refactors implementation of DefaultDeserializer so that it is easier for
subclasses to override different subprocedures.

#546: adds support for joined table inheritance.
#548: requests can now use the Accept: */% header.

#559: fixes bug that stripped attributes with JSON API reserved names (like
“type”) when deserializing resources.

#583: fixes failing tests when using simplejson.
#590: allows user to specify a custom operator for filters.

#599: fixes unicode bug using urlparse.urljoin() with the future library in re-
source serialization.

#625: adds schema metadata to root endpoint.

#626: allows the client to request case-insensitive sorting.

Version 1.0.0b1

This is a beta release; these changes will appear in the 1.0.0 release.

Released on April 2, 2016.

#255: adds support for filtering by PostgreSQL network operators.

#257: ensures additional attributes specified by the user actually exist on the
model.

#363 (partial solution): don’t use COUNT on requests that don’t require pagination.
#404: Major overhaul of Flask-Restless to support JSON API.

Increases minimum version requirement for python-dateutil to be strictly
greater than 2.2 to avoid parsing bug.

#331#415: documents the importance of URL encoding when using the like op-
erator to filter results.

#376: add a not_like operator for filter objects.

#431: adds a url_prefix keyword argument to the APIManager constructor, so
one can specify a URL prefix once for all created APIs.

3.3. Changelog 79

https://github.com/jfinkels/flask-restless/issues/481
https://github.com/jfinkels/flask-restless/issues/488
https://github.com/jfinkels/flask-restless/issues/492
https://github.com/jfinkels/flask-restless/issues/508
https://github.com/jfinkels/flask-restless/issues/534
https://github.com/jfinkels/flask-restless/issues/536
https://github.com/jfinkels/flask-restless/issues/540
https://github.com/jfinkels/flask-restless/issues/545
https://github.com/jfinkels/flask-restless/issues/546
https://github.com/jfinkels/flask-restless/issues/548
https://github.com/jfinkels/flask-restless/issues/559
https://github.com/jfinkels/flask-restless/issues/583
https://github.com/jfinkels/flask-restless/issues/590
https://github.com/jfinkels/flask-restless/issues/599
http://python-future.org/
https://github.com/jfinkels/flask-restless/issues/625
https://github.com/jfinkels/flask-restless/issues/626
https://github.com/jfinkels/flask-restless/issues/255
https://github.com/jfinkels/flask-restless/issues/257
https://github.com/jfinkels/flask-restless/issues/363
https://github.com/jfinkels/flask-restless/issues/404
https://github.com/jfinkels/flask-restless/issues/331
https://github.com/jfinkels/flask-restless/issues/415
https://github.com/jfinkels/flask-restless/issues/376
https://github.com/jfinkels/flask-restless/issues/431

Flask-Restless Documentation, Release 1.0.0b2.dev

#449: roll back the session on any SQLAlchemy error, not just a few.
#432#462: alias relation names when sorting by multiple attributes on a relation-
ship.

#436#453: use __table__.name instead of __tablename__ to infer the collection

name for the SQLAIchemy model.

#440#475: uses the serialization function provided at the time of invoking
APIManager.create_api() to serialize each resource correctly, depending on its

type.

#474: include license files in built wheel for distribution.

#501: allows empty string for url_prefix keyword argument to APIManager.
create_api().

#476: use the primary key provided at the time of invoking APIManager.
create_api() to build resource urls in responses.

Older versions

Note: As of version 0.13.0, Flask-Restless supports Python 2.6, 2.7, and 3. Before that,
it supported Python 2.5, 2.6, and 2.7.

Note: As of version 0.6, Flask-Restless supports both pure SQLAlchemy and Flask-
SQLAIlchemy models. Before that, it supported only Elixir models.

Version 0.17.0

Released on February 17, 2015.

Corrects bug to allow delayed initialization of multiple Flask applications.
#167: allows custom serialization/deserialization functions.

#198: allows arbitrary Boolean expressions in search query filters.

#226: allows creating APIs before initializing the Flask application object.
#274: adds the url_for() function for computing URLs from models.

#379: improves datetime parsing in search requests.

#398: fixes bug where DELETE_SINGLE processors were not actually used.
#400: disallows excluding a primary key on a POST request.

80

Chapter 3. Additional information

https://github.com/jfinkels/flask-restless/issues/449
https://github.com/jfinkels/flask-restless/issues/432
https://github.com/jfinkels/flask-restless/issues/462
https://github.com/jfinkels/flask-restless/issues/436
https://github.com/jfinkels/flask-restless/issues/453
https://github.com/jfinkels/flask-restless/issues/440
https://github.com/jfinkels/flask-restless/issues/475
https://github.com/jfinkels/flask-restless/issues/474
https://github.com/jfinkels/flask-restless/issues/501
https://github.com/jfinkels/flask-restless/issues/476
https://github.com/jfinkels/flask-restless/issues/167
https://github.com/jfinkels/flask-restless/issues/198
https://github.com/jfinkels/flask-restless/issues/226
https://github.com/jfinkels/flask-restless/issues/274
https://github.com/jfinkels/flask-restless/issues/379
https://github.com/jfinkels/flask-restless/issues/398
https://github.com/jfinkels/flask-restless/issues/400
http://tools.ietf.org/html/rfc7231#section-4.3.3

Flask-Restless Documentation, Release 1.0.0b2.dev

Version 0.16.0

Released on February 3, 2015.

o #237: allows bulk delete of model instances via the allow_delete_many keyword
argument.

o #313#389: APIManager.init_app() now can be correctly used to initialize multi-
ple Flask applications.

o #327#391: allows ordering searches by fields on related instances.
e #353: allows search queries to specify group_by directives.
* #365: allows preprocessors to specify return values on GET requests.

* #385: makes the include_methods keywords argument respect model properties.

Version 0.15.1

Released on January 2, 2015.

e #367: catch sqlalchemy.exc.IntegrityError, sqlalchemy.exc.DataError, and
sqlalchemy.exc.ProgrammingError exceptions in all view methods.

e #374: import sqlalchemy.schema.Column from sqlalchemy directly, instead of
sqlalchemy.sql.schema.

Version 0.15.0

Released on October 30, 2014.
e #320: detect settable hybrid properties instead of raising an exception.

e #350: allows exclude/include columns to be specified as SQLAlchemy column
objects in addition to strings.

* #356: rollback the SQLAlchemy session on a failed PATCH request.
* #368: adds missing documentation on using custom queries (see Custom queries)

Version 0.14.2

Released on September 2, 2014.

o #351#355: fixes bug in getting related models from a model with hybrid proper-
ties.

Version 0.14.1

Released on August 26, 2014.

3.3. Changelog 81

https://github.com/jfinkels/flask-restless/issues/237
https://github.com/jfinkels/flask-restless/issues/313
https://github.com/jfinkels/flask-restless/issues/389
https://github.com/jfinkels/flask-restless/issues/327
https://github.com/jfinkels/flask-restless/issues/391
https://github.com/jfinkels/flask-restless/issues/353
https://github.com/jfinkels/flask-restless/issues/365
http://tools.ietf.org/html/rfc7231#section-4.3.1
https://github.com/jfinkels/flask-restless/issues/385
https://github.com/jfinkels/flask-restless/issues/367
http://docs.sqlalchemy.org/en/latest/core/exceptions.html#sqlalchemy.exc.IntegrityError
http://docs.sqlalchemy.org/en/latest/core/exceptions.html#sqlalchemy.exc.DataError
http://docs.sqlalchemy.org/en/latest/core/exceptions.html#sqlalchemy.exc.ProgrammingError
https://github.com/jfinkels/flask-restless/issues/374
http://docs.sqlalchemy.org/en/latest/core/metadata.html#sqlalchemy.schema.Column
https://github.com/jfinkels/flask-restless/issues/320
https://github.com/jfinkels/flask-restless/issues/350
https://github.com/jfinkels/flask-restless/issues/356
http://tools.ietf.org/html/rfc5789#section-2
https://github.com/jfinkels/flask-restless/issues/368
https://github.com/jfinkels/flask-restless/issues/351
https://github.com/jfinkels/flask-restless/issues/355

Flask-Restless Documentation, Release 1.0.0b2.dev

e #210:
o #347:
e #354:

lists some related projects in the documentation.
adds automated build testing for PyPy 3.

renames is_deleted to was_deleted when providing keyword arguments

to postprocessor for DELETE method in order to match documentation.

Version 0.14.0

Released on August 12, 2014.

* Fixes bug where primary key specified by user was not being checked in some
POST requests and some search queries.

o #223:
e #280:
o #290:

tors.

o #315:
o #324:
o #325:
o #328:
e #333:
o #338:
e #339:
o #344:

documents CORS example.
don’t expose raw SQL in responses on database errors.

show error message if search query tests for NULL using comparison opera-

check for query object being None.

DELETE should only return 204 No Content if something is actuall deleted.
support null inside has search operators.

enable automatic testing for Python 3.4.

enforce limit in flask_restless.views.helpers.count().

catch validation exceptions when attempting to update relations.

use user-specified primary key on PATCH requests.

correctly encodes Unicode fields in responses.

Version 0.13.1

Released on April 21, 2014.

o #304:

fixes mimerender bug due to how Python 3.4 handles decorators.

Version 0.13.0

Released on April 6, 2014.

 Allows universal preprocessors or postprocessors; see Universal preprocessors and
postprocessors.

* Allows specifying which primary key to use when creating endpoint URLs.

* Requires SQLAlchemy version 0.8 or greater.

e #17: use Flask’s flask.Request. json to parse incoming JSON requests.

82

Chapter 3. Additional information

https://github.com/jfinkels/flask-restless/issues/210
https://github.com/jfinkels/flask-restless/issues/347
https://github.com/jfinkels/flask-restless/issues/354
http://tools.ietf.org/html/rfc7231#section-4.3.5
http://tools.ietf.org/html/rfc7231#section-4.3.3
https://github.com/jfinkels/flask-restless/issues/223
https://github.com/jfinkels/flask-restless/issues/280
https://github.com/jfinkels/flask-restless/issues/299
https://github.com/jfinkels/flask-restless/issues/315
https://github.com/jfinkels/flask-restless/issues/324
http://tools.ietf.org/html/rfc7231#section-4.3.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://github.com/jfinkels/flask-restless/issues/325
https://github.com/jfinkels/flask-restless/issues/328
https://github.com/jfinkels/flask-restless/issues/333
https://github.com/jfinkels/flask-restless/issues/338
https://github.com/jfinkels/flask-restless/issues/339
http://tools.ietf.org/html/rfc5789#section-2
https://github.com/jfinkels/flask-restless/issues/344
https://github.com/jfinkels/flask-restless/issues/304
https://github.com/jfinkels/flask-restless/issues/17
http://flask.pocoo.org/docs/api/#flask.Request.json

Flask-Restless Documentation, Release 1.0.0b2.dev

#29: replace custom jsonify_status_code function with built-in support for
return jsonify(), status_code style return statements (new in Flask 0.9).

#51: Use mimerender to render dictionaries to JSON format.

#247: adds support for making POST requests to dictionary-like association
proxies.

#249: returns 404 Not Found if a search reveals no matching results.

#254: returns 404 Not Found if no related field exists for a request with a related
tield in the URL.

#256: makes search parameters available to postprocessors for GET and PATCH
requests that access multiple resources.

#263: Adds Python 3.3 support; drops Python 2.5 support.

#267: Adds compatibility for legacy Microsoft Internet Explorer versions 8 and
9.

#270: allows the query attribute on models to be a callable.
#282: order responses by primary key if no order is specified.

#284: catch DataError and ProgrammingError exceptions when bad data are sent
to the server.

#286: speed up paginated responses by using optimized count() function.

#293: allows sqlalchemy. types.Time fields in JSON responses.

Version 0.12.1

Released on December 1, 2013.

#222: on POST and PATCH requests, recurse into nested relations to get or create
instances of related models.

#246: adds pysqlite to test requirements.
#260: return a single object when making a GET request to a relation sub-URL.
#264: all methods now execute postprocessors after setting headers.

#265: convert strings to dates in related models when making POST requests.

Version 0.12.0

Released on August 8, 2013.

#188: provides metadata as well as normal data in JSONP responses.
#193: allows DELETE requests to related instances.

#215: removes Python 2.5 tests from Travis configuration.

3.3. Changelog 83

https://github.com/jfinkels/flask-restless/issues/29
https://github.com/jfinkels/flask-restless/issues/51
https://mimerender.readthedocs.io
https://github.com/jfinkels/flask-restless/issues/247
http://tools.ietf.org/html/rfc7231#section-4.3.3
https://github.com/jfinkels/flask-restless/issues/249
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://github.com/jfinkels/flask-restless/issues/254
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://github.com/jfinkels/flask-restless/issues/256
http://tools.ietf.org/html/rfc7231#section-4.3.1
http://tools.ietf.org/html/rfc5789#section-2
https://github.com/jfinkels/flask-restless/issues/263
https://github.com/jfinkels/flask-restless/issues/267
https://github.com/jfinkels/flask-restless/issues/270
https://github.com/jfinkels/flask-restless/issues/282
https://github.com/jfinkels/flask-restless/issues/284
https://github.com/jfinkels/flask-restless/issues/286
https://github.com/jfinkels/flask-restless/issues/293
http://docs.sqlalchemy.org/en/latest/core/type_basics.html#sqlalchemy.types.Time
https://github.com/jfinkels/flask-restless/issues/222
http://tools.ietf.org/html/rfc7231#section-4.3.3
http://tools.ietf.org/html/rfc5789#section-2
https://github.com/jfinkels/flask-restless/issues/246
https://pypi.python.org/pypi/pysqlite
https://github.com/jfinkels/flask-restless/issues/260
http://tools.ietf.org/html/rfc7231#section-4.3.1
https://github.com/jfinkels/flask-restless/issues/264
https://github.com/jfinkels/flask-restless/issues/265
http://tools.ietf.org/html/rfc7231#section-4.3.3
https://github.com/jfinkels/flask-restless/issues/188
https://github.com/jfinkels/flask-restless/issues/193
http://tools.ietf.org/html/rfc7231#section-4.3.5
https://github.com/jfinkels/flask-restless/issues/215

Flask-Restless Documentation, Release 1.0.0b2.dev

e #216: don’t resolve Query objects until pagination function.
* #217: adds missing indices in format string.
o #220: fix bug when checking attributes on a hybrid property.

o #227: allows client to request that the server use the current date and/or time
when setting the value of a field.

o #228 (as well as #212#218#231): fixes issue due to a module removed from Flask
version 0.10.

Version 0.11.0

Released on May 18, 2013.

* Requests that require a body but don’t have Content-Type: application/json
will cause a 415 Unsupported Media Type response.

* Responses now have Content-Type: application/json.
¢ #180: allow more expressive has and any searches.

e #195: convert UUID objects to strings when converting an instance of a model to
a dictionary.

e #202: allow setting hybrid properties with expressions and setters.

e #203: adds the include_methods keyword argument to APIManager.
create_api(), which allows JSON responses to include the result of calling
arbitrary methods of instances of models.

o #204, 205: allow parameters in Content-Type header.

Version 0.10.1

Released on May 8, 2013.
e #115: change assertEqual () methods to assert statements in tests.
o #184#186: Switch to nose for testing.

e #197: documents technique for adding filters in processors when there are none
initially.

Version 0.10.0

Released on April 30, 2013.
e #2: adds basic GET access to one level of relationship depth for models.
e #113: interpret empty strings for date fields as None objects.

e #115: use Python’s built-in assert statements for testing

84 Chapter 3. Additional information

https://github.com/jfinkels/flask-restless/issues/216
https://github.com/jfinkels/flask-restless/issues/217
https://github.com/jfinkels/flask-restless/issues/220
https://github.com/jfinkels/flask-restless/issues/227
https://github.com/jfinkels/flask-restless/issues/228
https://github.com/jfinkels/flask-restless/issues/212
https://github.com/jfinkels/flask-restless/issues/218
https://github.com/jfinkels/flask-restless/issues/231
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.16
https://github.com/jfinkels/flask-restless/issues/180
https://github.com/jfinkels/flask-restless/issues/195
https://github.com/jfinkels/flask-restless/issues/202
https://github.com/jfinkels/flask-restless/issues/203
https://github.com/jfinkels/flask-restless/issues/204
https://github.com/jfinkels/flask-restless/issues/115
https://github.com/jfinkels/flask-restless/issues/184
https://github.com/jfinkels/flask-restless/issues/186
http://nose.readthedocs.org
https://github.com/jfinkels/flask-restless/issues/197
https://github.com/jfinkels/flask-restless/issues/2
http://tools.ietf.org/html/rfc7231#section-4.3.1
https://github.com/jfinkels/flask-restless/issues/113
https://github.com/jfinkels/flask-restless/issues/115

Flask-Restless Documentation, Release 1.0.0b2.dev

e #128: allow disjunctions when filtering search queries.
¢ #130: documentation and examples now more clearly show search examples.
* #135: added support for hybrid properties.

¢ #139: remove custom code for authentication in favor of user-defined pre- and
postprocessors (this supercedes the fix from #154).

e #141: relax requirement for version of python-dateutil to be not equal to 2.0 if
using Python version 2.6 or 2.7.

* #146: preprocessors now really execute before other code.
e #148: adds support for SQLAIchemy association proxies.

o #154 (this fix is irrelevant due to :issue:'139°): authentication function now may
raise an exception instead of just returning a Boolean.

e #157: POST requests now receive a response containing all fields of the created
instance.

* #162: allow pre- and postprocessors to indicate that no change has occurred.
o #164#172#173: PATCH requests update fields on related instances.
* #165: fixed bug in automatic exposing of URLs for related instances.

¢ #170: respond with correct HTTP status codes when a query for a single instance
results in none or multiple instances.

e #174: allow dynamically loaded relationships for automatically exposed URLs
of related instances.

o #176: get model attribute instead of column name when getting name of primary
key.

e #182: allow POST requests that set hybrid properties.

e #152: adds some basic server-side logging for exceptions raised by views.

Version 0.9.3

Released on February 4, 2013.
* Fixes incompatibility with Python 2.5 try /except syntax.

¢ #116: handle requests which raise IntegrityError.

Version 0.9.2

Released on February 4, 2013.
o #82#134#136: added request pre- and postprocessors.
e #120: adds support for JSON-P callbacks in GET requests.

3.3. Changelog 85

https://github.com/jfinkels/flask-restless/issues/128
https://github.com/jfinkels/flask-restless/issues/130
https://github.com/jfinkels/flask-restless/issues/135
https://github.com/jfinkels/flask-restless/issues/139
https://github.com/jfinkels/flask-restless/issues/154
https://github.com/jfinkels/flask-restless/issues/141
http://labix.org/python-dateutil
https://github.com/jfinkels/flask-restless/issues/146
https://github.com/jfinkels/flask-restless/issues/148
http://docs.sqlalchemy.org/en/latest/orm/extensions/associationproxy.html
https://github.com/jfinkels/flask-restless/issues/154
https://github.com/jfinkels/flask-restless/issues/157
http://tools.ietf.org/html/rfc7231#section-4.3.3
https://github.com/jfinkels/flask-restless/issues/162
https://github.com/jfinkels/flask-restless/issues/164
https://github.com/jfinkels/flask-restless/issues/172
https://github.com/jfinkels/flask-restless/issues/173
http://tools.ietf.org/html/rfc5789#section-2
https://github.com/jfinkels/flask-restless/issues/165
https://github.com/jfinkels/flask-restless/issues/170
https://github.com/jfinkels/flask-restless/issues/174
https://github.com/jfinkels/flask-restless/issues/176
https://github.com/jfinkels/flask-restless/issues/182
http://tools.ietf.org/html/rfc7231#section-4.3.3
https://github.com/jfinkels/flask-restless/issues/152
https://github.com/jfinkels/flask-restless/issues/116
http://docs.sqlalchemy.org/en/latest/core/exceptions.html#sqlalchemy.exc.IntegrityError
https://github.com/jfinkels/flask-restless/issues/82
https://github.com/jfinkels/flask-restless/issues/134
https://github.com/jfinkels/flask-restless/issues/136
https://github.com/jfinkels/flask-restless/issues/120
http://tools.ietf.org/html/rfc7231#section-4.3.1

Flask-Restless Documentation, Release 1.0.0b2.dev

Version 0.9.1

Released on January 17, 2013.

#126: fix documentation build failure due to bug in a dependency.

#127: added “ilike” query operator.

Version 0.9.0

Released on January 16, 2013.

Removed ability to provide a Session class when initializing APIManager; pro-
vide an instance of the class instead.

Changes some dynamically loaded relationships used for testing and in ex-
amples to be many-to-one instead of the incorrect one-to-many. Versions of
SQLAlchemy after 0.8.0b2 raise an exception when the latter is used.

#105: added ability to set a list of related model instances on a model.

#107: server responds with an error code when a PATCH or POST request speci-
ties a field which does not exist on the model.

#108: dynamically loaded relationships should now be rendered correctly by the
views._to_dict() function regardless of whether they are a list or a single object.

#109: use sphinxcontrib-issuetracker to render links to GitHub issues in docu-
mentation.

#110: enable results_per_page query parameter for clients, and added
max_results_per_page keyword argument to APIManager.create_api().

#114: fix bug where string representations of integers were converted to integers.

#117: allow adding related instances on PATCH requests for one-to-one relation-
ships.

#123: PATCH requests to instances which do not exist result in a 404 Not Found
response.

Version 0.8.0

Released on November 19, 2012.

#94: views. _to_dict() should return a single object instead of a list when resolv-
ing dynamically loaded many-to-one relationships.

#104: added num_results key to paginated JSON responses.

Version 0.7.0

Released on October 9, 2012.

86

Chapter 3. Additional information

https://github.com/jfinkels/flask-restless/issues/126
https://github.com/jfinkels/flask-restless/issues/127
http://docs.sqlalchemy.org/en/latest/orm/session_api.html#sqlalchemy.orm.session.Session
https://github.com/jfinkels/flask-restless/issues/105
https://github.com/jfinkels/flask-restless/issues/107
http://tools.ietf.org/html/rfc5789#section-2
http://tools.ietf.org/html/rfc7231#section-4.3.3
https://github.com/jfinkels/flask-restless/issues/108
https://github.com/jfinkels/flask-restless/issues/109
https://sphinxcontrib-issuetracker.readthedocs.org/en/latest
https://github.com/jfinkels/flask-restless/issues/110
https://github.com/jfinkels/flask-restless/issues/114
https://github.com/jfinkels/flask-restless/issues/117
http://tools.ietf.org/html/rfc5789#section-2
https://github.com/jfinkels/flask-restless/issues/123
http://tools.ietf.org/html/rfc5789#section-2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://github.com/jfinkels/flask-restless/issues/94
https://github.com/jfinkels/flask-restless/issues/104

Flask-Restless Documentation, Release 1.0.0b2.dev

Added working include and exclude functionality to the views._to_dict()
function.

Added exclude_columns keyword argument to APIManager.create_api().
#79: attempted to access attribute of None in constructor of APIManager.
#83: allow POST requests with one-to-one related instances.

#86: allow specifying include and exclude for related models.

#91: correctly handle POST requests to nullable DateTime columns.

#93: Added a total_pages mapping to the JSON response.

#98: GET requests to the function evaluation endpoint should not have a data
payload.

#101: exclude in views._to_dict() function now correctly excludes requested
tields from the returned dictionary.

Version 0.6

Released on June 20, 2012.

Added support for accessing model instances via arbitrary primary keys, instead
of requiring an integer column named id.

Added example which uses curl as a client.
Added support for pagination of responses.

Fixed issue due to symbolic link from README to README.md when running pip
bundle foobar Flask-Restless.

Separated API blueprint creation from registration, using APIManager.
create_api() and APIManager.create_api_blueprint().

Added support for pure SQLAlchemy in addition to Flask-SQLAlchemy.

#74: Added post_form_preprocessor keyword argument to APIManager.
create_api().

#77: validation errors are now correctly handled on PATCH requests.

Version 0.5

Released on April 10, 2012.

Dual-licensed under GNU AGPLv3+ and 3-clause BSD license.
Added capturing of exceptions raised during field validation.

Added examples/separate_endpoints.py, showing how to create separate API
endpoints for a single model.

3.3. Changelog 87

https://github.com/jfinkels/flask-restless/issues/79
https://github.com/jfinkels/flask-restless/issues/83
http://tools.ietf.org/html/rfc7231#section-4.3.3
https://github.com/jfinkels/flask-restless/issues/86
https://github.com/jfinkels/flask-restless/issues/91
http://tools.ietf.org/html/rfc7231#section-4.3.3
http://docs.sqlalchemy.org/en/latest/core/type_basics.html#sqlalchemy.types.DateTime
https://github.com/jfinkels/flask-restless/issues/93
https://github.com/jfinkels/flask-restless/issues/98
http://tools.ietf.org/html/rfc7231#section-4.3.1
https://github.com/jfinkels/flask-restless/issues/101
https://github.com/jfinkels/flask-restless/issues/74
https://github.com/jfinkels/flask-restless/issues/77
http://tools.ietf.org/html/rfc5789#section-2

Flask-Restless Documentation, Release 1.0.0b2.dev

Added include_columns keyword argument to APIManager.create_api()
method to allow users to specify which columns of the model are exposed in
the APL

Replaced Elixir with Flask-SQLAlchemy. Flask-Restless now only supports
Flask-SQLAlchemy.

Version 0.4

Released on March 29, 2012.

Added Python 2.5 and Python 2.6 support.

Allow users to specify which HTTP methods for a particular API will require
authentication and how that authentication will take place.

Created base classes for test cases.

Moved the evaluate_functions function out of the flask_restless.search
module and corrected documentation about how function evaluation works.

Added allow_functions keyword argument to APIManager.create_api().

Fixed bug where we weren’t allowing PUT requests in APIManager.
create_api().

Added collection_name keyword argument to APIManager.create_api() to al-
low user provided names in URLs.

Added allow_patch_many keyword argument to APIManager.create_api() to al-
low enabling or disabling the PATCH many functionality.

Disable the PATCH many functionality by default.

Version 0.3

Released on March 4, 2012.

Initial release in Flask extension format.

88

Chapter 3. Additional information

Index

A
APIManager (class in flask_restless), 63

C

collection_name() (in
flask_restless), 70
create_api() (flask_restless. APIManager
method), 64
create_api_blueprint()
(flask_restless. APIManager
method), 65

module

D

DefaultDeserializer
flask_restless), 74

DefaultSerializer (class in flask_restless),
73

DeserializationException
flask_restless), 75

(class in

(class in

model_for() (in module flask_restless), 71

MultipleExceptions (class in
flask_restless), 76

P

primary_key_for() (in module
flask_restless), 72

ProcessingException (class in
flask_restless), 76

R

register_operator() (in module
flask_restless), 70

S

SerializationException (class in

flask_restless), 75
serialize() (flask_restless.DefaultSerializer
method), 74

deserialize() (flask_restless.DefaultDeserialigefialize_many()

method), 75

detail (flask_restless.DeserializationException

attribute), 75

F

flask_restless (module), 63

|

Illegal ArgumentError
flask_restless), 70

init_app() (flask_restless. APIManager
method), 69

(class in

M

(flask_restless.DefaultSerializer

method), 74

serializer_for() (in module flask_restless),
71

simple_serialize() (in module
flask_restless), 76

simple_serialize_many() (in module

flask_restless), 76

status (flask_restless.DeserializationException

attribute), 75

U

url_for() (in module flask_restless), 72

message() (flask_restless.DeserializationException

method), 75

89

	User's guide
	Downloading and installing Flask-Restless
	Quickstart
	Creating API endpoints
	Requests and responses
	Customizing the ReSTful interface
	Common SQLAlchemy setups

	API reference
	API

	Additional information
	Similar projects
	Copyright and license
	Changelog

